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ABSTRACT

This article presents a novel iterative algorithm based on
Non-negative Matrix Factorisation (NMF) that is partic-
ularly well suited to the task of automatic music tran-
scription (AMT). Compared with previous NMF based
techniques, this one does not aim at factorizing the time-
frequency representation of the entire musical signal into a
combination of the possible set of notes. Instead, the pro-
posed algorithm proceeds iteratively by initially decom-
posing a part of the time-frequency representation into a
combination of a small subset of all possible notes then re-
investing this information in the following step involving a
large subset of notes. Specifically, starting with the lowest
octave of notes that is of interest, each iteration increases
the set of notes under consideration by an octave. The res-
olution of a lower dimensionality problem used to properly
initialize matrices for a more complex problem, results in
a gain of some percent in the transcription accuracy.

1. INTRODUCTION

The term Automatic Music Transcription (AMT) refers to
the task of designing a system that automatically trans-
poses an acoustic signal into a written format that can be
read by a musician e.g. sheet music. In Western music, the
basic unit of this transposition is the note, which is partly
defined by its duration and its pitch. When more than one
note can occur at the same time, the music is said to be
polyphonic. Further, each instrument has its own harmonic
pattern that is time-dependent for each of its notes. Indeed,
the spectral content during the onset part of a note is differ-
ent from the one during the sustain or fading parts. AMT
of polyphonic musics amounts to tracking the fundamental
frequencies among a mixture of musical events with pos-
sibly overlapping harmonics. Many approaches have been
proposed but the results are still unsatisfactory compared
to what can be achieved by a human expert [5]. Lately,
techniques like NMF [17] [16] [7] and Probabilistic Latent
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Component Analysis (PLCA) [4] [18] have gained great
interest since they have proved very efficient in bringing
forward the underlying structure of musical data. Both are
conceptually linked and have been shown equivalent un-
der certain formulations [8]. They provide a framework
under which the transcription can be formulated as a cost-
function minimization problem, which are deeply studied
problems and many algorithms exist to solve them. How-
ever, these algorithms (such as gradient descent, expecta-
tion maximization, alternating least-squares, etc...) suffer
from major flaws. They offer no guarantees of finding a
global minimum (if any) in general, and can easily get
stuck in local ones. On top of this, they are highly sensitive
to initial conditions and an improper initialization can lead
to bad results [6] [1]. These issues are great liabilities for
AMT because the intricate nature of harmonically related
sounds results in the existence of many local minima which
in turn increases the chance of an incorrect transcription.

In this paper we present an NMF-based algorithm tai-
lored for the task of AMT, showing increased robustness
with respect to the issues of finding proper initialization
parameters and avoiding irrelevant local minima.

2. THE NMF FRAMEWORK

2.1 General overview

The different steps of the algorithm are presented in Fig-
ure 1. First, the time-frequency representation of the sig-
nal (spectrogram) is computed by applying a Constant Q
Transform (CQT) on successive time windows. Then the
proposed IMRNMF algorithm is applied to the spectro-
gram to produce a matrix representing the activation of
each note accross time. This matrix is then post-processed
to extract chunks representing potential notes which are
then weighted before being truly acknowledged as a note
and transcribed.

NMF aims at representing a non-negative signal as an
additive synthesis of events taken from a finite dictionary.
The original signal is then represented by the activation at
each time of a subset of these events. If the signal lends
itself to such description, the decomposition will likely be
meaningful in the sense that it will bring out some of the
underlying structure. In the case of AMT, the decompo-
sition of the music into events that can be assimilated to
notes, would be most desirable. A time-frequency repre-
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Figure 1: Overall algorithm.

sentation, like the spectrogram (which is a matrix contain-
ing the amplitude spectrum for a sequence of time win-
dows) is an example of additive data where the sources
would be constituted by the amplitude spectra of the dif-
ferent notes composing it. As mentioned, we will con-
sider that the time-frequency representation is obtained via
a CQT, which allows all frequencies of interest for all notes
to be contained in the same number of frequency bins (in
the time frequency representation) regardless of the octave
or the note unlike the standard Discrete Fourier Transform.

More formally, given the spectrogram Y 2 RN⇥T
+ , where

N is the number of frequency bins and T the number of
temporal frames, and given K  N, T ; find W 2 RN⇥K

+

the spectral dictionary matrix, and H 2 RK⇥T
+ such that

Y ⇡WH (1)

Where, Y denotes the spectrogram obtained from the
CQT, and which is decomposed into weighted sums of a
finite set of notes whose spectra constitute the columns of
W.

This decomposition does not have an exact solution and
consequently the typical approach is to find a solution that
minimises a suitable cost function, CY (W, H) with the con-
strainsts that the elements of W and H are positive. Histor-
ically, as introduced by Paatero [15] the canonical norm
of the matrices difference: kY � WHk was taken as a
cost function. Incidently, a factorization is inherently de-
pendent on the cost function used to weight the reconsti-
tution. As a result, the choice of a relevant cost function
to increase the accuracy of the decomposition has been
largely studied and yielded significant increases in the re-
sults. In the next section we review some of the key prin-
ciples driving current efforts to enhance the transcription
through NMF related techniques.

2.2 Achieving a good factorization

The best factorization we could hope for, would express Y
as the activation of spectral templates that correspond ex-
actly to the ones of the notes present in the excerpt. That
implies especially, that no existing note be expressed as the

sum of two or more elements (columns) of the dictionary
W, (no false detection), or that no combination of two or
more notes be expressed by a single element (no deletion).
Such issues are referred to as cross-row talk. A common
response to cross-row talk is to try to increase the sparsity
of the decomposition matrices, and especially the columns
of H . (A vector is said to be sparse when most of its ele-
ments are zeros). The energy is concentrated in a few units
which are used to represent typical data vectors. Having
a control over sparsity provides more robustness in ”real-
life” situations where the number of sources is not known
by advance and a higher rank than needed is fixed for the
decomposition matrix.

Controlling the sparsity is mainly achieved by choosing
a suitable cost function CY and estimation methods that
allow desirable properties to be enforced on W and H . Al-
though, the task of finding a minimum for CY is not easy
since the problem is often ill-posed, the reformulation of
the factorization problem in terms of approaches such as
Convex Quadratic Programming [7] [19] [11] provides el-
egant frameworks to naturally introduce new cost functions
(with regularization parameters), or enforce relevant con-
straints on W and H .

The control over sparsity can be explicit. In [12], Hoyer
develops algorithm to enforce constant predefined sparsi-
ties sw, sh over W and H . Such conditions are not real-
istic in real-life situations for audio data since the degree
of polyphony can evolve throughout the excerpt. In [11],
Heiler and Schnörr, give a formulation of the factorization
as a second order cone programming problem, enabling
them to enforce only boundary conditions on the sparsi-
ties. In [1], an adaptation of the ALS algorithm called
Alternating Hoyer-Constrained Least Squares is proposed.
However, this way of enforcing sparsity is often too re-
strictive in the case of musical data where the degree of
polyphony is free to evolve during time, on top of the fact
that we do not have prior knowledge on it. Consequently,
we would prefer a softer, implicit control over sparsity. In
such cases, it is often achieved through cost functions that
are expressed in a form where the variation of a parameter
provides an input to indirectly affect sparsity. In [7] the
cost function is defined by

Cy =
1

2
kY �WHk22 + �1kHk1 +

�2

2
kHk22 (2)

The coefficient �1 weights the importance given to sparse
vectors against a good reconstitution, and �2 is a Tikhonov
regularization parameter. Other successful approaches have
considered a class of divergences called �-divergences as
cost functions [10], which were successfully applied to
AMT in [7]. d�(Y |W, H) is defined by:

d�(Y |W, H) =

8

>

<

>

:

Y ⌦ log Y
WH � Y + WH � = 1

Y
WH � log Y

WH � 1 � = 0
1

�(��1) (Y
� + (� � 1)(WH)� � �Y ⌦ (WH)��1) else

(3)

Where the divisions, the logarithm and the powers have
to be understood element-wise,⌦ is the element-wise prod-
uct, and 1 the matrix containing only ones. The choice
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of � provides an indirect control over sparsity. It can be
noted that in the case of � = 2 it reduces to the Euclidean
distance, and in the case � = 1 to the KL-div KL diver-
gence, which has been found to promote sparsity [17]. The
minimization of both those cost functions can be achieved
through multiplicative update rules given in [10] and [7].
This is the cost function which has been adopted in the
proposed method.

Finally, all the algorithms mentioned are highly sensi-
tive to initial conditions and perform poorly when dimen-
sion and the density of local minima increase. In the case
of AMT, initializing the spectral dictionary matrix W so
that the elements (columns) are structurally relevant, im-
proves the factorization a great deal. In [16], the columns
of W are initialized with one for each note at harmonic
positions and zeros elsewhere. It makes W relevant for
the transcription and straightforward to associate to a note.
While it is not too difficult to see how W can be intitial-
ized, it is much less obvious for H .

In the next section, we present a versatile algorithm to
perform the factorization which can be used with any up-
date rules, enhances the sparsity and gives element of an-
swer as to how initialize H leading to increased robustness.

3. THE PROPOSED FACTORIZATION
ALGORITHM

3.1 Principle

The proposed algorithm performs an iterative factorization
of the spectrogram by initially starting with a single oc-
tave of notes prior to incrementing it by an octave in each
subsequent iteration. The algorithms performs by starting
from the lowest octave, and by including one higher oc-
tave at each step until the whole range of note is covered.
Let S = {n0, ..., nK�1} 2 NK be an interval of integers
containing the midi notes considered. The i-th range is the
subset of S defined by ri = {n0, ..., n12i�1}.

Figure 2: Cutting of the midi scale in ranges.

Only considering the notes lying in this range comes
down to focusing on subregions, in terms of frequency and
notes, of the decomposition matrices defined as follows.

Y (i) ⇡W (i)H(i) (4)

with:
Y (i) = Y[lb,ui

b],• (5)

W (i) = W[lb,ui
b],[ls,ui

s] (6)

The columns of W and the rows of H , indexed by the
sources, are restricted to the subset {ls, ..., ui

s} where ls
denotes the source of the lower note and ui

s the source
of the higher note of the i-th range. We have the follow-
ing equalities: ls = n0 and ui

s = n12i�1. The rows of
W and Y representing the frequency bins are restricted to
the subregion {lb, ..., ui

b} where lb designs the lower fre-
quency bin associated with the fundamental frequency of
the lower note in the range, and ui

b the upper bound for the
frequency bins associated with the fundamental frequency
of the higher note in the i-th range. As previously men-
tioned, the spectrogram is computed with a CQT, therefore
we can note that the semitone resolution, b, i.e., the number
of bins associated with a single semitone is a constant. The
superscript (i) denotes the restriction of a matrix to the i-th
range. With this notation, we can express the boundaries
as: lb = b(n0�1)+1 and ui

b = b(n12i�1). All the tempo-
ral frames are considered at each step of the factorization,
this is noted •.

As it has been said, any multiplicative update rule can
be used with this approach. Specifically, in the work re-
ported in this paper, the update rules (8) and (9) for the
KL divergence are applied as follows to H(i) and the sub-
matrix W (i).

H(i)  H(i) ⌦
tW (i)(Y (i) ⌦ (W (i)H(i)).��2)

tW (i)(W (i)H(i)).��1
(7)

W (i)  W (i) ⌦ (Y (i) ⌦ (W (i)H(i)).��2)tH(i)

(W (i)H(i)).��1tH(i)
(8)

Then H(i+1) is initialized as follows (see 3):
8

>

>

<

>

>

:

H(i+1)
[ls,ui

s],• = H(i)

H(i+1)

[ui
s,ui+1

s ],• = random positive matrix

(9)

Figure 3: Initialization of H(i+1) from H(i).

Figures depicting the evolution of the activation matrix
throughout the different steps are shown in section 5.

3.2 Motivation and advantages

This method has been designed as a way to compensate
for some of the weaknesses of NMF applied to AMT, prin-
cipally being having to use more potential sources than
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strictly necessary in the decomposition (which can cause
confusion in the factorization, hence the necessity of en-
forcing sparsity), and the high spectral similarity between
certain combination of harmonically related notes, which
added to the high number of sources is likely to increase
the probability of falling into a local minimum. Starting
from the lowest octave, helps secure a sound bass-line and
avoid confusing notes with weak fundamental with their
upper octave counterpart (octave problem); as it is likely to
happen in the usual implementation since low notes often
have a weak fundamental. Incrementing the set of notes by
a single octave is also a step in this direction, in order to
limit as much as possible the risks of mistaking a note for
one of its harmonically related counterparts. Beside, lim-
iting the number of sources reduces the dimension of the
problem and heuristically, the risks of falling into a local
minimum. Re-investing knowledge in the next steps of the
factorization helps converge toward a better minimum by
ensuring convergence on growing subspaces, where confu-
sion is less likely. The resulting activation matrix is much
sparser, and much easier to post-process because of the
more distinct activation peaks.

An additional advantage of the proposed method is that
it allows for different treatments on the parts of the spectro-
gram that are factorized. For instance, it allows for the defi-
nition of octave-based tolerance thresholds in terms of am-
plitude or spatial repartition (peaks with a maximum value
under a threshold or ranging on less than a given number
of frames will be discarded). Various works in the fields
of psychoacoustics and acoustic signal processing showed
that such treatment is of the utmost importance in order to
reliably weight and perform competitive selection between
acoustic events distributed across a large frequency span
and with different amplitudes [13] [20] [14].

4. BACK-END TRANSCRIPTION

The back-end transcription limits itself to the mere detec-
tion of activation events in H , since the initialization of W
made straightforward the association between events and
notes. H having previously been normalized we applied
a threshold-based onset detection, allowing to debit acti-
vation matrix rows into chunks that can further along be
weighted and sieved before being labelled as note. Those
chunks are bits of the activation matrix defined by: the midi
note (the row number), the onset time and the offset time.
The computation of the onsets is performed by applying an
adaptive thresholding on the first order differential vector
of each row of H as suggested in [2]. The thresholding
value is based on the mean of the half-wave rectified first
order differential signal on the 100 neighbouring frames.
The onset is defined as the first frame for which the am-
plitude is superior than 0.2 times the thresholding value (it
has experimentally been found as a good value).

A score on the chunks was defined in order to perform
a post-selection of the chunk and screen out the ones that
are very likely false positives. This cost function is based
on features of the chunks considered as indicators of the

probability of this chunk to represent a true positive. This
features are: the length of the chunk l, the maximum value
of the amplitude within this chunk m, the value of the first
order differential of the signal at the onset time (represent-
ing the steepness of the onset) d, and the energy of the
signal e within the chunk against the cumulated energy of
the signal of lower harmonics during the same time range
el. The score of a chunk is defined as:

S = (1� exp(
�l

c1
))(1� exp(

�m

c2
))

(1� exp(
�d

c3
))(1� exp(

�e

c1el
)) (10)

where c1, c2, c3, and c4 are arbitrary constants. For the
tests we used (c1, c2, c3, c4) = (8, 0.1, 0.03, 0.66) and only
chunks with a score higher than 0.2 were kept. These
values were experimentally determined as reasonable and
were kept fixed for the totality of our test. No music-
specific fine-tuning was performed.

5. EXPERIMENTAL RESULTS

Tests were performed on the MAPS ENSTDkCl
database [9] which is composed exclusively of piano
recordings with a wide variety of polyphony, genre,
tempo, and rhythm. The set of notes taken into account
ranges between the midi notes 21 and 108. The spectro-
gram is computed by a CQT algorithm with sixty bins
per octave to be robust to frequency shifts around the
theoretical peak position. beta divergence cost function,
with � = 1 (KL-divergence) was chosen for all matrix
factorisations. The matrix W is kept fixed during the step-
by-step factorization then, an additional standard NMF is
performed with initialization from previous results. Our
Iterative Multi Range Non-negative Matrix Factorization
(IMRNMF) system is compared against an NMF-based
system without the range-by-range factorization but the
same back-end transcription algorithm; and the winning
algorithm of the MIREX 2013 competition in Multi-F0
note tracking and Multi-F0 note estimation based on
Shift Invariant Probabilistic Latent Component Analysis
(SI PLCA) [3]. The matrix W is initialized offline using
the array provided with the SI PLCA source code which
consists of pre-extracted and pre-shifted spectral templates
for various instruments. An onset-based metric is used
with a 50 ms tolerance.

The transcription is performed on the first 30 seconds
of each track in the database. The thresholding and weigh-
ing constants used in the back-end transcription as well as
in the IMRNMF are kept fixed during the whole test in-
dependently of the extract being processed, and even bet-
ter results can be achieved with a case-by-case fine tun-
ing of these constants, based on parameters such as genre
and tempo. Below are shown illustrative examples of the
evolution of the activation matrix on the MAPS MUS-
schu 143 3 ENSTDkCl track.
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Method Accuracy F-measure
NMF 0.38 0.55

SI PLCA 0.37 0.53
IMRNMF 0.52 0.69

Table 1: Comparative results on the MAPS ENSTDkCl
database.

Figure 4: H(2) after the first 2 steps

Figure 5: H(4) after the first 4 steps

Figure 6: H(6) after the first 6 steps

Figure 7: Final output of the factorization

Figure 8: H obtained with SI PLCA

Figure 9: Backend transcription output

6. CONCLUSION AND FUTURE WORK

A novel Iterative Multi-Range Non-negative Matrix
Factorisation (IMRNMF) based algorithm for automatic
music transcription is presented in this paper. At the
cost of increased computational requirements, though
still perfectly accessible, the proposed system leads to
an increase in transcription accuracy compared to the
top-performing existing algorithms. This increase may be
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better explained by the increased sparsity of the activation
matrix. The improved sparsity is most likely due to the
proposed algorithm finding better local minima to the cost
function when compared to the traditional NMF. While
a number of parameters in the proposed systems are em-
pirically determined at this stage (thresholding constants,
weighting parameters, chunk-wise cost function in the
final decision process...), a more data-driven approach to
estimating them may lead to even better performance and
will be addressed in future work.
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