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ABSTRACT

This paper presents a note-by-note approach for auto-
matic solfège assessment. The proposed system uses me-
lodic transcription techniques to extract the sung notes from
the audio signal, and the sequence of melodic segments is
subsequently processed by a two stage algorithm. On the
first stage, an aggregation process is introduced to perform
the temporal alignment between the transcribed melody
and the music score (ground truth). This stage implicitly
aggregates and links the best combination of the extracted
melodic segments with the expected note in the ground
truth. On the second stage, a statistical method is used to
evaluate the accuracy of each detected sung note. The tech-
nique is implemented using a Bayesian classifier, which is
trained using an audio dataset containing individual scores
provided by a committee of expert listeners. These individ-
ual scores were measured at each musical note, regarding
the pitch, onset, and offset accuracy. Experimental results
indicate that the classification scheme is suitable to be used
as an assessment tool, providing useful feedback to the
student.

1. INTRODUCTION

The practice of solfège is used by beginner musicians to
learn and improve the ability of the musical reading through
the repeated singing of musical notes from a music score. In
fact, this kind of exercise is a fundamental part of the music
learning process. It guides the student to build its own mu-
sical perceptions by creating an internal image of the sound
along the vocal emission of a note (or sequences of notes as
intervals, scales and melodies). The ability to read the notes
on a music score and at the same time to hear internally
and to sing them a prima vista is here generically called
solfège, and it is considered a prerequisite for performance
and effective musical knowledge [13]. During the solfège,
is crucial to have a constant feedback by an external expert,
who should be responsible for detecting eventual mistakes
and pinpoint the best way to fix them. Traditionally, the
evaluation process of the solfège is conducted by a music
teacher, inside of a classroom. Nowadays, with the spread
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of the internet, new educational methods bring up new pos-
sibilities to music education using the e-learning paradigm.
In the case of large number of evaluations, which is a typi-
cal situation in distance learning courses, the labor of the
teacher becomes exhaustive and tedious. Even in cases of
traditional and presential music lessons, the judgment by an
expert musician is not a trivial task, specially because the
human discernment may be affected by subjective factors
and fatigue [14, 20]. Thus, an automatic solfège assessment
tool can be very helpful in this context.

Usually, solfège is evaluated by comparing the singing
performance with the target music score (ground truth).
In this case, the first part of this task have some similari-
ties with automatic melodic transcription algorithms [14].
However, a set of similarity measures to correlate the user
performance with the expert’s (human) judgment is still
needed. Although there are some papers that provide an
overall score for a given solfège [10], it is not to our knowl-
edge the existence of systems that perform a note-by-note
analysis, which is very important in music teaching. In this
paper we introduce a new note-by-note evaluation method
based on the individual scores provided by human evalu-
ators. More precisely, we introduce a Bayesian classifier
which is applied to each musical note detection, working as
an alternative to the correlation method based on the global
judgment score used in [10]. The main difference here is
the fact that the performance can be evaluated with a small
granularity, at each musical note, but keeping the assess-
ment correlated with the human judgment. Additionally, the
Bayesian approach allows the mapping of the performance
errors into a confidence measure. We also introduced a
new temporal alignment method between the transcribed
melody and the music score (ground truth) by using a clus-
tering process. The grouping process was chosen in place
of dynamic time warping (DTW) [12] approach because it
is less sensible to error propagation and it does not have any
monotonicity condition.

This paper is organized as follows: Section 2 presents
an overview about the related techniques. Section 3 shows
a detailed description of the audio database generation and
the corresponding annotation process by the musicians ex-
perts. Section 4 describes the proposed method to automatic
solfège assessment. Section 5 presents the results of our
experiments and Section 6 draws the conclusion of this
work.
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2. RELATED WORKS

As far as we know, there is no method for solfège evaluation
in a note-by-note scale. Therefore, this section will revise
some papers that tackle related problems. For example, Jha
and Rao [4] focused on the vowel quality of the singing
voice. The authors use low-level features, including the
spectrum envelope and pitch contour for singing evalua-
tion. Their algorithm detects the onset of each vowel by
searching for rapid changes in specific frequency bands
that characterize the vowel formants, and then correlates
each vowel with an articulatory space by a linear regres-
sion scheme. Miryala et al. [8] do not perform assessment
directly, but their approach automatically identifies vocal
expressions as voice glides and vibratos, which could be
also used as a kind of singing evaluation.

The related problem of melodic transcription has been
studied by several researchers. The common pipeline on the
melody transcription techniques splits the process in low-
level feature estimation, note segmentation and labeling,
and post processing [3,11]. For example, [19] implemented
a melodic transcription algorithm by detecting a sequence
of fundamental frequencies in a frame-wise fashion, which
are subsequently converted into observation probabilities
and used in a Hidden Markov Model (HMM). Ryynanen
and Klapuri [17] implemented a similar approach, but ex-
tending the number of low-level features. Thus, besides
the fundamental frequency estimates, they also mapped
into probabilities distributions the features regarding voice/
unvoice, accent, and meter estimation. Frequently, a mu-
sicological model is also included in music transcription
algorithms to improve the system accuracy, acting as a prior
probability. The authors of [19] also incorporate a duration
model, which maps probability density functions with the
subdivisions and multiples unities of the beat time. Musico-
logical models might be used to detect the tonality and the
rhythmic structure of the musical performance, constraining
the output options and consequently improving the accu-
racy [5]. Unfortunately, the musicological model cannot be
directly used as a priori information on assessment tools
since it is not possible to have any expectation about the
student singing performance.

The work by Molina et al. [10], which explores the
singing assessment regarding note-based melodic similari-
ties, as well as the temporal alignment between the student
performance and the target melody, has similar goals to
ours. Despite the use of note-level similarity measures, the
final evaluation is built using the global assessment scores
from the human experts, who had placed a global score (be-
tween 1 and 10) for each singing performance on a previous
training stage. The estimated correlations in [10] seem to
be advantageous to extract a measure of quality in a global
context. However, as a drawback, that approach discard
local (note level) information from the experts’ evaluation.
In other words, it is not possible to precisely locate and
quantify the note(s) responsible for a bad or good score
from the singing performance. A small extension of this
approach was presented in [6], including new audio spectral
features. A recent work [9] shows a taxonomy of evaluation

measures used in several automatic singing transcriptions
algorithms. Most of the tabulated approaches have used
evaluation measures for singing transcription algorithms
based on note/frame-level error. There are also some strate-
gies that use time warping alignment information between
the ground truth and the transcribed melody [10]. Despite
the variety and effort to build robust and comprehensive
evaluations measures, these previous ideas cannot be di-
rectly used in the context of solfège assessment. In fact, the
used definition of correct pitch/ onset/offset in [9] applies
ranges of tolerance with fixed values, that may be a reli-
able procedure to compare distinct algorithms of melodic
transcription. However, it may not agree with the human
judgment perception in a solfège assessment context. Some
authors [6,10] tried to solve this issue connecting the expert
analysis with the evaluation measures, but the final human
evaluation carries out only a global interpretation, lacking
in details at individual sung notes. In the next sections we
present our dataset and proposed model for solfège assess-
ment. This model aims to evaluate individual sung notes,
giving a note-based feedback that makes a meaningful link
with the human judgment by musician experts.

3. PROPOSED DATASET AND ANNOTATIONS

The proposed dataset consists of sequences of musical inter-
vals in the chromatic scale. The audio recordings were done
using seven adults, including trained (three) and untrained
(four) singers ranging from 17 to 61 years old. These me-
lodic sequences were recorded during four months, in mono
format with a sample rate of 44100Hz and 16 bits quantiza-
tion.

It was decided to support the singing process by a refer-
ence piano audio track, since a part of the group of singers
was unable to read music scores. In this reference audio
track, the intervals were played in sequence, but with gaps
between them. Each singer filled these gaps repeating the
previous heard melodic interval at the next beat time, and
all recording sessions were synchronized by a metronome.

The singers were asked to choose and, if possible, to
diversify the used phonemes. They were also asked to
sing freely, but respecting the pitch, attack and duration
of the previously indicated sounds, aiming to capture real
examples of spontaneous everyday singing. Intentionally
aiming to capture a higher variability of natural situations,
the recordings were conducted in two distinct environments:
a part of the examples was recorded in a studio, where the
resulting audio records are clean; another part of the audio
records was done in informal conditions, presenting some
background noise and reverberation.

A total of 21 sessions were recorded, containing (twelve
ascending intervals and twelve descendants intervals of the
chromatic scale). Each singer performed the melodic in-
tervals in three distinct tempos: Adagio, 60 bpm; Andante
Moderato, 90 bpm; and Allegro, 120 bpm. Along with the
recordings, an annotation process was conducted by a com-
mittee of experts (five graduated musicians with more than
ten years of experience in solfège assessment auditions) in
order to label each sung note from the recorded dataset into
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two possible categories (correct and incorrect) regarding
the pitch, onset and offset accuracy. Before each annotation
section, the committee was advised to hear some random
samples from the dataset. This warmup procedure was im-
portant because it helped to create an agreement among the
experts, who shared some important characteristics and as-
pects of the recorded melodic intervals. As the dataset was
broken in parts, this process was repeated in several days,
until the whole set of audio records had been evaluated (in
fact, the whole process for building the annotated dataset
took several months).

For each sung note in the audio dataset, all the five
evaluators casted a vote (correct or incorrect) regarding
each analyzed parameter (pitch, onset and offset). As it will
be explained in the next section, disagreement among the
evaluators were kept and used to model our probabilistic
classifier. Also, each note is assigned to a single label
(correct or incorrect) regarding to each parameter, based on
the majority of votes cast by the experts (i.e., at least 3 votes
for the same label). Hence, some labels can be considered
more reliable than others, based on the number of votes.
For example, regarding the pitch, 15.38% of the samples
received 3 votes in agreement, which means an expressive
degree of doubt among the experts. The same analysis was
made for the onset and offset parameters, and the percentage
of notes with 3 votes (doubt) was 10.71% and 12.09%,
respectively. The final annotated dataset contains 3276
labeled samples.

4. OUR MODEL

The proposed computational model for automatic solfège
evaluation is structured in two main stages. The first stage
performs the melodic transcription, using the pYIN algo-
rithm [7] to extract the fundamental frequency from the
audio signal. The pYIN algorithm is a modification of the
smoothing procedure of the YIN technique [1], introducing
a probabilistic variant that outputs multiple pitch candidates
along with the associated probabilities. It also employs a
Hidden Markov Model (HMM) based on [16] to perform the
pitch tracking, providing an improvement in the accuracy
of the standard YIN. The extracted frame-wise sequence
f0 is then segmented and labeled into segments of music
notes using the hysteresis approach of [11]. After, in this
stage, we introduced a new alignment procedure, where the
transcribed sung segments are aligned with the music score.
This procedure converts group of melodic segments into
atomic unities (music notes) and allows a direct comparison
(note against note) between the transcribed melody and the
ground truth. In the second stage, a probabilistic classifier
performs the note-based evaluation. The algorithm takes
the generated sequence of notes from the previous stage
and applies a Bayesian classifier to evaluate the accuracy
of the parameters pitch, onset and offset. At this stage, a
rejection procedure is also introduced to map the doubt
from the categorization (correct or incorrect) given by the
expert listeners. These stages are described next.

4.1 Melodic alignment

To evaluate the solfège performance, a comparison of the
singing performance with the target music score (ground
truth) is required. Thus, after obtaining the automatic me-
lodic transcription (using [7] and [11]), it is still necessary
to connect each transcribed note with its corresponding note
in the music score.

The first challenge is the fact that the melodic transcrip-
tion often generates groups of fragmented notes (segments),
which should be mapped to only one element of the ground
truth. Each melodic fragment is represented by fil , where
i is the segment index and l is the relative index of each
frame within this segment. Additionally, as in [10], there is
no assumption of synchronization by a metronome in our
approach, so that the transcribed notes might be misaligned.
In [10], an integrated dynamic time warping procedure
(DTW) was employed to perform the time alignment in a
frame-wise fashion. However, in some cases, the bound-
ary condition of the DTW algorithm might propagate the
accumulated matching error, which causes an undesirable
alignment between the transcribed sequence and the ground
truth.

Here, we propose a new alignment process that, at the
same time, groups note fragments and also maps the result-
ing block with the correspondent music note in the ground
truth. Despite being similar to the DTW approach, it does
not propagate the cumulative error since it does not need to
obey the boundary condition of the DTW algorithm. The
joint grouping/alignment process was designed as a brute
force algorithm that is implemented using a cost matrix C.
For each note k in the ground truth, the algorithm computes
the cumulative distance measure considering all possibili-
ties of grouping of adjacent segments, starting at segment
index i and stopping at segment index j. This algorithm is
efficiently built with the support of a 3D data structure, as
depicted in Figure 1a. Thus, for each possible combination
(k, i, j), a dissimilarity measure is computed as

C(k, i, j) = a1D f (k, i, j)+a2Dd(k, i, j)+
a3Ds(k, i, j)+a4De(k, i, j),

(1)

where
D f = | f gt

k �median( fi,1... f j,lmax)| (2)

is the pitch distance between the ground truth note k and
the median values of f0 belonging to the range starting at
first frame of the segment i and finishing at the last frame
lmax of the segment j,

Dd = |Dgt
k �

j

Â
m=i

Dm| (3)

measures the duration difference (in seconds) between the
note k in the ground truth (Dgt

k ) and the group formed from
segment i to j in the transcribed melody (Di is the duration
of segment i),

Ds = |Sgt
k �Si| (4)

accounts for the delay or advance (in seconds) of the onset
of the first segment of the selected group and the ground
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Figure 1: (a) 3D structure used to compute the similarities between the transcribed melodic segments and the music score.
(b) Grouping process of several segments (gray) into one music note (blue). (c) The best grouping for the note k in the
ground truth is found by the indexes i (first element) and j (last element), which minimize the function C(k, i, j).

truth note k, and analogously

De = |Egt
k �E j| (5)

accounts for the delay or advance of the offset (in seconds).
The coefficients ai are weights to balance the individual
contribution of each measure, and our experiments show
that a1 = 1.0, a2 = 2.0, a3 = 2.0, a4 = 2.0 is a good com-
bination.

The grouping process and its mapping to the ground
truth sequence is achieved by a function

u(k) = (ik, jk) = argmin
i, j

C(k, i, j), (6)

so that each note k is mapped to the group of segments from
indices i (first segment) to j (last segment), obtaining the
final and consolidated transcribed note.

The computational complexity of the alignment process
in the worst case is O(MN2), where M is the number of
music notes in the ground truth and N is the number of me-
lodic segments. However, the inclusion of components Ds
and De in Eq. (1) makes the magnitude of the dissimilarity
measure to grow fast when the group of segments is far
from the expected time position. As a consequence, it is
possible to interrupt the brute force search loop in a few it-
erations by limiting the value of C(k, i, j). Furthermore, the
window of evaluation containing the melodic segments can
be restricted to begin closer to the target note. This process
will also decrease the computational cost and also avoid
eventual local minimum issues in Eq. (6). Figure 1b illus-
trates one example of the grouping and alignment process,
in which six segments are mapped into three notes.

4.2 Note-based evaluation

After the alignment achieved by the melodic transcription,
the system performs the note-based assessment. Distinct
probability density functions are modeled to represent the
correct and incorrect sung notes, regarding individually to
the pitch (D f , in midi scale), onset (Ds, in seconds) and
offset (De, in seconds) deviations. For each sung note, a
Bayesian classifier assigns the parameters pitch, onset and
offset into correct j or incorrect j categories. Next, the
Bayesian classification process will be explained, focusing
on the D f (pitch) parameter. However, it is worth noting

that the classification process is also individually applied to
Ds and De in an analogous way.

Figure 2a shows the histograms of the pitch deviations
for correct and incorrect categories based on the expert’s
evaluation, denoted by jD f and jD f , respectively. As it can
be observed, the histogram of jD f presents a sharp peak
close the origin (related to low pitch errors), as expected.
Nevertheless, the two categories present considerable over-
lap, corroborating the discrepancies in the accuracy evalua-
tion by experts when for intermediate errors in the pitch. In
fact, since we had used the individual ratings of each note
from all evaluators to build de histograms, the pitch devi-
ation D f related to a note that received conflicting labels
among the evaluators contributes both for the histograms of
jD f and jD f .

A conditional probability density function is then es-
timated from the distributions of D f for each class r 2
{jD f ,jD f }, so that a posterior probability (that can be con-
sidered a measure of confidence) can be easily obtained.
Among several existing parametric probability density func-
tions (PDFs) for modeling positive random variables, the
Gamma distribution was chosen because it has been suc-
cessfully used to model similar problems [18], which have
similar characteristics to our data, such as single mode and
frequently skewed shape. The gamma PDF, parameterized
by the two positive parameters shape ar and scale qr, is
given by:

p(D f |r) ⇠ Ga(D f ;ar,qr) =
D f ar�1e

�dr
qr

G(ar)q ar
r

, (7)

where G is the gamma function.
The shape (ar) and scale (qr) parameters for each class

r 2 {j,j} were estimated using a maximum likelihood
approach [15]. Given the PDFs p(D f |j) and p(D f |j),
we can estimate the posterior probability of the pitch of a
correct/incorrect sung note by using the Bayes rule [2]:

p(r|D f ) =
p(D f |r)P(r)

p(D f )
, (8)

where p(D f ) = p(D f |j)P(j)+ p(D f |j)P(j) is the over-
all distribution of D f , and the prior probabilities P(j) and
P(j) are defined as equiprobable.

Figure 2b illustrates the decision boundary for jD f and
jD f as a red vertical dashed line, and it can be observed
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Figure 2: (a) Histogram of D f for classes j and j along
with fitted Gamma PDFs. (b) Posterior probabilities, along
with acceptance and rejection regions.

that there is a “fuzzy” decision boundary around it. In this
region, there is considerable overlap between p(D f |j) and
p(D f |j), causing the winning posterior probability to be
just a little above 0.5. Since this overlap region is caused in
part by conflicting labels from the evaluators, an appropriate
option is to reject samples that fall inside this fuzzy region.
As in [18], the errors (or misclassifications) are converted
into rejects using the Bayes rejection rule for the minimum
error [21]. The rejection rule splits the sample space into an
acceptance region A and a rejection region R, that is given
by:

R(TD f ) = {D f |1�max
r

p(r|D f ) > TD f }, (9)

A(TD f ) = {D f |1�max
r

p(r|D f )  TD f }, (10)

where the threshold TD f balances the tradeoff between the
number of rejected samples and the error rate e(TD f ), given
by:

e(TD f ) = Â
D f 2A(TD f )

⇣

1�max
r

p(r|D f )
⌘

p(D f ). (11)

The choice of the threshold TD f = 0.33 was determined
from a set of experiments where the classification accuracy
and the number of rejections were taken into account (more
details about this choice are presented in section 5). The
posterior probabilities and the boundaries between regions
A and R generated by this threshold are shown in Figure 2b.

Thus, regarding the pitch accuracy and using the
Bayesian classifier given by Eq. (8) in combination with
the rejection procedure provided by Eqs. (9) and (10), each
sung note is classified into three possible classes: correct,
incorrect, or undetermined (reject). When a classification is

done (correct or incorrect), the corresponding probability
measure is also used to provide a meaningful feedback of
confidence to the user. The whole note-based evaluation
process is also done independently for the onset and offset
note accuracy. This means that, for each sung note, the
system output gives individual class labels and confidence
measures for pitch, onset and offset.

5. EXPERIMENTAL RESULTS

Aiming to extract an objective evaluation of the proposed
solfège assessment system, a set of experiments were con-
ducted using the annotated audio dataset described in Sec-
tion 3. From the audio recordings, we extracted the melodic
transcriptions, which were subsequently aligned with the
ground truth, as described in Section 4.1. The pitch, onset
and offset deviations (D f , Ds and De) were computed from
the comparison between the ground truth and the aligned
melodies, and a subset of the samples was used to estimate
the parameters required in the corresponding Gamma PDFs.
The remaining samples were reserved to test the model.

For the validation scheme, we used a 10-fold cross-
validation scheme, in which the dataset is split randomly
into ten equal parts. For each round of the cross-validation,
9 folds are used to train the probabilistic model and the
remaining fold is used to validate the Bayesian classifier
described in Section 4.2. In our experiments, we used the
Bayesian classifier with and without the rejection rule. In
both situations, the system classifies each parameter (pitch,
onset, offset) of each sung note in two possibles categories:
correct or incorrect (when the rejection rule was applied,
some notes were kept unclassified).

Table 1 shows the confusion matrices generated by the
Bayesian classifiers for the pitch, onset and offset without
the rejection rule, and the accuracy is over 90% for the
three analyzed parameters. Also, the system tends to pro-
duce more false negatives (i.e., mark as incorrect a correctly
sung note) then false positives, particularly for the offset
parameters, being a “rigid” evaluator. The misclassification
errors are caused by two main reasons: first, a possible bad
melodic transcription and/or bad alignment between the
sung fragments and the ground truth can introduce errors
on the similarities measures; second, the disagreement be-
tween the human evaluators generated an inherently fuzzy
region near to the decision boundary. In fact, as noted in
Section 3, 10 to 15% of the notes presented strong disagree-
ment among the evaluators, so that the ground truth label
may not be reliable.

The rejection rule provided by Eq. 9 avoids the classi-
fication of samples that potentially fall inside this fuzzy
region. The effect of varying the rejection thresholds in the
percentage of accepted samples and also the accuracy for
the pitch, onset and offset analysis is shown in Figure 3.
As expected, lower thresholds decrease the number of ac-
cepted samples and increases the accuracy rate. Although
the definition of an optimal value for the threshold is diffi-
cult, the accuracy should be as maximum as possible while
the number of rejected samples should be minimal. As the
focus of this work is on music education, we believe it is
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Table 1: Evaluation of the proposed approach using 10-Folds cross validation without the Bayesian rejection rule.
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jD f 2.54% 97.46%
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(a) Pitch evaluation: TD f = 0.33
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Output Class

jDS jDS

jDS 94.17% 5.83%

jDS 7.34% 92.66%

93.42%

(b) Onset evaluation: TDS = 0.31
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jDE jDE

jDE 91.64% 8.36%

jDE 2.54% 97.46%

94.55%

(c) Offset evaluation: TDE = 0.39

Table 2: Evaluation of the proposed approach using 10-Folds cross validation with the Bayesian rejection rule. The system
can answer in 90% of the times, increasing the final accuracy in almost 4%.
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Figure 3: Comparative of the accuracy versus the number
of non-rejected samples. Solid lines show the accuracy
evolution, which are affected by the thresholds TD f (pitch),
TDs (onset), and TDe (offset).

preferred to not have an answer than to provide an incorrect
feedback. Based on this assumption, and also considering
that the percentage of samples with doubt from the expert
evaluation is over 10%, we decided to set all thresholds to
reject 15% of the samples in average.

Table 2 shows the accuracy evaluation for the 10-fold
experiment using the Bayesian classifier with the rejection
rule, in which the rejection thresholds TD f (pitch), TDS (on-
set) and TDE (offset) were set so that 15% of the samples are
rejected, matching approximately the percentage of samples
with dubious labels. As it can be observed, the overall accu-
racies for all analyzed parameters increased in 3-5% when
compared to the option without rejection, reaching up to
almost 96% accuracy. Also, the number of false negatives
was greatly reduced, particularly for the offset evaluation.
This fact indicates that when in doubt, the evaluators tend
to label a note as correct rather than incorrect. Furthermore,
32–35% of the rejected samples received 3 agreeing votes
by the experts, which means that our system is removing
more than twice of the samples related to the experts’ doubt
when compared with the whole dataset.

6. CONCLUSION

This paper presented a note-by-note approach for automatic
solfège assessment focused on musical education, in which
each sung note is evaluated considering the human evalu-
ation perception in small scale, focused on the parameters
of pitch, onset and offset at a specific part of the solfege
practice. The proposed system uses melodic transcription
techniques to extract the sung notes from the audio sig-
nal, and the sequence of melodic segments is subsequently
processed by a two stage algorithm. In the first stage, an
aggregation process was introduced to perform the tem-
poral alignment between the transcribed melody and the
music score (ground truth). This stage implicitly aggre-
gates and links the best combination of the extracted me-
lodic segments with the expected notes in the ground truth.
The proposed alignment process does not impose the DTW
boundary condition between the two sequences, avoiding
the propagation of the accumulated matching error. In the
second stage, a Bayesian classifier is used to evaluate the
accuracy of each detected sung note. This statistical model
was trained using a combination of the extracted measures
(D f , Ds, and De) with the individual scores provided by a
committee of expert listeners.

Experimental results indicate that the classification
scheme achieved accuracy rates in the range 90–91% with-
out using the rejection rule (i.e., feedback for all evaluated
notes), and 93–96% using the Bayesian rejection procedure
(for the chosen thresholds, our tool is able to give feedback
in 85% of the trials in average). Besides the classifica-
tion label (correct, incorrect or undefined), the system also
provides probability measure, which helps to indicate how
likely correct or incorrect was the performance of the sung
note. As future work, new research is planned to integrate
new audio features, as well as the usage of lyrics analysis,
to improve the segmentation and alignment on the first stage
of this approach.
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