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ABSTRACT 

Separating the leading singing voice from the musical 
background from a monaural recording is a challenging 
task that appears naturally in several music processing 
applications. Recently, kernel additive modeling with 
generalized spatial Wiener filtering (GW) was presented 
for music/voice separation. In this paper, an adaptive au-
ditory filtering based on β-order minimum mean-square 
error spectral amplitude estimation (bSA) is applied to 
the kernel additive modeling for improving the singing 
voice separation performance from monaural music sig-
nal. The proposed algorithm is composed of five modules: 
short time Fourier transform, music/voice separation 
based on bSA, determination of back-fitting, back-fitting, 
and inverse short time Fourier transform. In the proposed 
method, the Singular Value Decomposition (SVD)-based 
factorized spectral amplitude exponent β for each kernel 
component is adaptively calculated for effective bSA-
based auditory filtering performance during kernel back-
fitting. Using a back-fitting threshold, the kernel back-
fitting process can automatically be iteratively performed 
until convergence. Experimental results show that the 
proposed method achieves better separation performance 
than GW based on kernel additive modeling. 

1. INTRODUCTION 

A singing voice in a music signal contains useful infor-
mation for a song, as it embeds the singer, the lyrics, and 
the emotion of the song. Therefore, vocal or singing voice 
separation from monaural music signal is an important 
task in many applications, such as automatic karaoke [1], 
instrument/vocalist identification [2], music/voice tran-
scription, music remixing [3] and audio restoration. 

So far, numerous vocal separation algorithms have 
been proposed with various approaches, such as non-
negative matrix factorization [4], adaptive Bayesian mod-
eling [5], and pitch-based interference [6-7]. These meth-
ods usually first map signals onto a feature space, then 

detect singing voice segments, and finally apply source 
separation. 

Recently, a relatively promising approach using kernel 
additive modeling (KAM) was proposed [8], wherein the 
spectrogram of each source is modeled only locally. This 
approach encompasses a large number of recently pro-
posed methods for source separation [9-14]. KAM per-
mits the use of different proximity kernels for different 
sources, with separation using an iterative kernel back-
fitting (KBF) algorithm. In the kernel back-fitting, gener-
alized Wiener filtering (GW) is used for the step of mixed 
music signal separation, and two-dimensional median fil-
tering is applied to the power spectrogram of each source 
estimate for kernel spectrogram model fitting at each iter-
ation. The GW requires good models of the spectrograms 
of each proximity source along with its spatial character-
istics and permits very good separation provided these 
parameters are well estimated. 

In spoken speech enhancement, one source may be the 
target voice, while others correspond to background noise 
which must be filtered out. Among the vast amount of 
single channel speech enhancement algorithms based on 
minimum mean-square error (MMSE) estimation of 
short-time spectral amplitude (STSA) published in the 
literature, it is well-known that the Bayesian STSA esti-
mation methods [15] outperform the Wiener filtering, 
spectral-subtraction, and subspace approaches. In addi-
tion, among the Bayesian STSA estimation methods, β-
order MMSE spectral amplitude estimation [15-17] 
achieved better enhancement performance than the exist-
ing Bayesian estimators, such as those based on the 
MMSE of the short-time spectral amplitude [15-17], and 
the MMSE of the logarithm of the STSA (LSA) [15-17]. 

In this paper, an advanced music/voice separation 
method is proposed, in which β-order MMSE spectral 
amplitude estimation and kernel spectrogram back-fitting 
are combined for improvement of the separation perfor-
mance. In addition, the parameter β concerned in β-order 
MMSE spectral amplitude estimation is adaptively esti-
mated according to the masking mechanism of human 
auditory system, the compressive nonlinearities of the 
cochlea and the critical sub-band SNR. 

The proposed method has the following four ad-
vantages: (1) In the separation step, β-order MMSE 
estimation (bSA) of the factorized spectral amplitude 
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was used instead of GW for the kernel back-fitting 
procedure to achieve better separation performances. 
(2) The Singular Value Decomposition (SVD)-based 
factorized spectral amplitude βj were adaptively calcu-
lated for effective bSA estimation performance. (3) In 
the back-fitting step, an SVD-based factorization pro-
cedure was applied to the power spectrogram filtered 
by median filter to achieve efficient compression be-
fore processing of the next proximity source. (4) Using 
a back-fitting threshold, the kernel back-fitting process 
can automatically be iteratively performed until con-
vergence. 

This paper is organized as follows. Section 2 describes 
the proposed method, while Section 3 discusses the ex-
perimental results. Finally, the conclusion is presented in 
Section 4. 

2. PROPOSED MUSIC/VOICE SEPARATION 
ALGORITHM 

The proposed algorithm is composed of five modules: 
short time Fourier transform (STFT), music/voice separa-
tion based on β-order MMSE spectral amplitude estima-
tion (bSA), determination of back-fitting, back-fitting, 
and inverse short time Fourier transform (ISTFT). 

Figure 1 denotes the overall procedure of the proposed 
music/voice separation algorithm. 

Short-time 
Fourier transform (STFT)

Music/Voice separation 
based on bSA

Inverse Short-time Fourier 
transform (ISTFT)

Back-fitting

Monaural music signal

Separated music and 
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Figure 1. Overall flow chart of proposed music/voice 
separation algorithm. 

We assume that the mixture music signal, x(n), is tak-
en as the sum of j underlying sources that are composed 
of some of percussive elements, one of the stable har-

monic elements, and one of the singing voice. Let a real-
valued monaural music signal in discrete-time domain x(n) 
be assumed as: 
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where j (= 1, 2, … J) is index of each objective sources, n 
is sample index, and oj(n) denotes an objective source in 
mixture music signal. 

First, an input monaural music signal x(n) is trans-
formed into the complex spectrogram X(ω,t) using the 
short-time discrete Fourier transform (STFT), as shown: 
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where R denotes the frame shift, t is the frame index, w(n) 
indicates a window function, N is size of window, and ω 
is the frequency bin index, which is related to the normal-
ized center frequency. 

From the input complex spectrogram X(ω,t), complex 
spectrogram Oj(ω,t) for each objective sources is estimat-
ed by β-order MMSE spectral amplitude estimation. 

Each current estimated spectrogram is compared with 
each previous estimated complex spectrogram. If the dif-
ference between the current and previous estimated spec-
trograms is not larger than the back-fitting threshold val-
ue, each complex spectrogram is converted back to the 
time domain using an inverse STFT. Conversely, if the 
difference between the two is larger than back-fitting 
threshold value, the kernel back-fitting process is iterated 
until convergence. 

During the back-fitting processes, the power spectro-
gram of the estimated spectrogram is filtered by a simple 
two dimensional median filter with source-specific binary 
kernels. The source-specific binary kernels are explained 
in detail in next sub-section. 

This kernel back-fitting proceeds in an iterative fash-
ion, with alternate performance of separation and re-
estimation (back-fitting) of the parameters to obtain new 
spectrogram estimates for each source. 

2.1 Re-estimation using back-fitting 

The re-estimation using back-fitting permits one to use 
different proximity kernels for each source and to sepa-
rate them in order to perform the estimation. It assumes 
that vertical lines in a spectrogram correspond to percus-
sive events; horizontal lines are typically associated with 
harmonics of pitched instruments, while cross-like forms 
correspond to singing voice events. In this case, peaks 
due to pitched harmonics can be regarded as outliers on 
the vertical lines associated with percussive events. Simi-
larly, peaks due to the percussion events can be regarded 
as outliers on the horizontal lines associated with pitched 
harmonic instruments. Median filters used extensively in 
image processing are good at eliminating outliers. That is, 
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median filtering each time frame will suppress harmonics 
in this frame resulting in a percussion enhanced frame, 
while median filtering each frequency slice will suppress 
percussion events. This brings to the concept of using 
median filters individually in the horizontal, vertical, and 
cross-like directions to separate harmonic, percussive and 
vocal events. 

The process is as follows: 
(Step 1) Using the estimated complex spectrogram 

Oj(ω,t), the power spectrogram of the complex spectro-
gram is calculated as: 

 ),(),( 
2
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(Step 2) A simple two dimensional median filter is ap-
plied to the power spectrogram Vj(ω,t) of the complex 
spectrogram with source-specific binary kernels, vocal, 
harmonic, and percussive. The different three proximity 
kernels [8] used for the median filter are as follows: (1) 
For a percussive and a repeating source, the vertical ker-
nel is chosen; (2) For a harmonic source, the horizontal 
kernel is chosen; (3) Finally, for a source with only a 
spectral smoothness assumption, the cross-like kernel is 
chosen as vocals. The detailed three kernels are explained 
in the source separation using kernel additive models [8]. 

The median filtered kernel spectrogram is given by: 

)],(K |),([),( ttVmediantM jjj ZZZ            (4) 

where Kj(ω,t) is a kernel which includes percussive ele-
ments of periodic components (j = 1, 2, ... J-2), the stable 
harmonic elements (j = J-1), and the singing voice (j = J),  
respectively. In effect, the original sample of the power 
spectrogram Vj(ω,t) of the complex spectrogram is re-
placed with the middle value obtained from a sorted list 
of the samples in neighborhoods of the original sample 
according to each kernel. 

(Step 3) Kernel back-fitting using Wiener filtering or 
the β-order spectral amplitude estimator comes with an 
important drawback: it requires the full-resolution spec-
trogram, and storage of a huge amount of parameters in 
each iteration, and for each source. To reduce the 
memory usage and improve the separation performance 
while maintaining computational efficiency, Singular 
Value Decomposition (SVD) is applied to the full-
resolution spectrogram Mj(ω,t): 

> @),(SVD),( tMCDtS jjjjj ZZ  6               (5) 

where Mj(ω,t) is factored into the matrix product of three 
matrices: the M × M row basis Dj matrix, the M × L diag-
onal singular value matrix Σj and the L × L transposed 
column basis functions Cj. 

2.2 Separation using β-order MMSE spectral ampli-
tude estimation 

In the separation step, β-order MMSE spectral amplitude 
estimation of the factorized spectral amplitude is used 

instead of GW for the kernel back-fitting procedure to 
achieve better music/voice separation performances. In 
the β-order MMSE spectral amplitude estimation, the 
spectral amplitude order β is quite important for singing 
voice enhancement or separation from monaural music 
signal. For the different β values, the gain values are dif-
ferent, and noise or other source reduction obtained is al-
so different. In this way, the appropriated gain can be ob-
tained by adaptively choosing right β. 

However, the traditional calculation method about β is 
based on overall Signal-to-Noise Ratio (SNR) of each 
frame. That is, their values are fixed and not vary with 
frequency in each frame. Furthermore, the human audito-
ry system has different sensitivity for different frequency 
components. Therefore, the b-th critical sub-band SNR is 
employed to calculate β values. For more effective bSA 
estimation performance, the Singular Value Decomposi-
tion (SVD)-based factorized spectral amplitude order 
βj(b,t) is adaptively calculated. Using adaptive β values 
and Singular Value Decomposition (SVD)-based factor-
ized spectral amplitude, we can yield effective mu-
sic/voice separation and obtain a good enhancement per-
formance. 

2.2.1 β-order MMSE spectral amplitude estimation 

The β-order MMSE spectral amplitude estimation is 
composed of following four modules: sum of all Sj(ω,t), 
calculation of a priori SNR and a posteriori SNR, calcula-
tion of adaptive βj(b,t), and bSA-based gain function. 

Figure 2 shows the β-order MMSE spectral ampli-
tude estimation. 
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Figure 2. Overall flow chart of the β-order MMSE spec-
tral amplitude estimation. 

Before to obtain the estimated complex spectrum 
Oj(ω,t) from SVD-based factorized Sj(ω,t), the sum W(ω,t) 
of all Sj(ω,t) is defined by: 
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Then, the a priori SNR ξj(ω,t) and the a posteriori SNR 
γj(ω,t) of each objective proximity sources are calculated 
as follows: 
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where χj(ω,t) is the function of ξj(ω,t) and γj(ω,t). 
The gain function Gj(ω,t) for the bSA is given by: 
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where Γ(•) is the gamma function, Φ(•) is the confluent 
hypergeometric function. And βj(b,t) denotes the parame-
ter based on the human auditory system. 

To calculate βj(b,t), we employ the critical sub-band 
SNR. The b critical bands are divided for each speech 
frame, where a non-linear mel-frequency scale is used, 
which approximates the behavior of the auditory sys-
tem. The mel-scale is a scale of pitches judged by lis-
teners to be equal in distance one from another. The 
reference point between this scale and normal frequen-
cy measurement is defined by equating a 1000 Hz tone, 
40 dB above the listener’s threshold, with a pitch of 
1000 mels. To convert a frequency ω in hertz into its 
equivalent in mel, the following formula is used: 

� � � �
¸
¹
·

¨
©
§ � 

700
1log0148.1127 Hzmelpitch Z        (11) 

The spectrum is then processed by a mel-filter bank. 
The signal energy of the spectrum within b-th critical 
frequency sub-bands by means of a series of triangular 
filters whose center frequency are spaced according to 
the mel-scale. Thereafter, the critical sub-band SNR 
Zj(b,t) is calculated in the b-th band. 

Finally, the estimated complex spectrogram from the 
gain function is defined as: 

� � � � � �ttGtO jj ,,, ZZZ &�                       (12) 

2.2.2 Calculation of adaptive βj(b,t) 

Since the spectral amplitude order βj(b,t) is based on 
characteristics of the human auditory system, including 
the compressive nonlinearities of the cochlea, and the 
perceived loudness, the choosing of adequate value for 
βj(b,t) can result in better enhancement or separation per-
formance. 

First, using W(ω,t) and Sj(ω,t), the sub-band SNR 
Zj(b,t) is calculated as: 
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where b ∊ [0, 23] denotes the index of critical band. Bup(b) 
and Blow(b) denote the upper and lower frequency bound 
of the b-th critical band, respectively. 

To obtain βj(b,t), the compression rate ),( tbβ j

�  at inter-

mediate frequencies can be calculated through linear in-
terpolation between βlow and βhigh. That is, 
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where d(b,t) is the frequency-position function to the crit-
ical band, βhigh = 0.2 and βlow = 1 denote the low-
frequency and high-frequency of the compression rate, η 
= 0.06 mm, l = 1, and A = 165.4 Hz are the parameters set 
in paper [18], and fω is the frequency in Hz corresponding 
to spectral component ω, i.e., fω = ωFs/N, where Fs is the 
sampling frequency. 

By limiting the range of ),( tbj

�
E  as [βmin, βmax] in order 

to obtain a better trade-off between target source en-
hancement and other source reduction, ),( tbj

�
E  can be cal-

culated through the following relationship: 
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where μ = 0.45, λ = 1.3, βmin = 0.4, and βmax = 4.0. 
According to sub-band SNR, the compressive nonline-

arities of the cochlea, and perceived loudness, a parame-
ter βj(b,t) is given as follows: 
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where q (0 < q < 1) is a smoothing parameter. 

3. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed bSA-
KBF algorithm is evaluated for the separation of back-
ground music and singing voice. 

For experiments, 100 full-length song tracks were used 
(50 songs from the ccMixter database containing many 
different musical genres, 50 songs from a self-recording 
studio music database), where all singing voices and mu-
sic accompaniments were recorded separately. All of the 
song data were stored in PCM format with mono, 16-bit 
depth, and 44.1 kHz sampling rate. 

For each track, the accompaniment of 6 repeating pat-
terns along with a 2 second steady harmonic source was 
determined. Vocals were modeled using a cross-like ker-
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nel with a height of 15 Hz and width of 20 ms. The frame 
length was set to 90 ms, with 80% overlap. Six to eight 
iterations were performed for the back-fitting algorithm 
(approximately until convergence). 

For the performance measures, performance was eval-
uated in terms of Normalized Source-to-Interference Ra-
tio (NSIR) and Normalized Source-to-Distortion Ratio 
(NSDR) by Blind Source Separation Evaluation (BSS 
Eval) metrics [19]. NSDR and NSIR for singing voice are 
defined as: 
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where vr is the synthesized singing voice, v is the original 
clean singing voice, and x is the mixture. NSDR is for 
estimating the improvement of the SDR between the pro-
cessed mixture x and the separated singing voice vr. 
Higher values indicate better separation. 

The performance of the proposed bSA algorithm was 
compared with those of GW, LSA based on KAM. 

Table 1 presents the experimental results of compara-
tive performance for music/voice separation of the four 
methods: 

• STFT-GW-KAM: As a basic KAM algorithm, the 
generalized Wiener filter was applied to the power 
spectrogram based on STFT. 

• SVD-GW-KAM: SVD was performed on the power 
spectrogram based on STFT. To the SVD-based de-
composed power spectrogram, the generalized Wie-
ner filter was applied. 

• SVD-LSA-KAM: The MMSE of the logarithm of the 
STSA was applied to the SVD-based decomposed 
power spectrogram. 

• SVD-bSA-KAM: β-order MMSE STSA was applied 
to the SVD-based decomposed power spectrogram. 

 

Methods 

Separation Per-
formance for 

Music 

Separation Per-
formance for 

Voice 
NSDR NSIR NSDR NSIR 

STFT-GW-KAM 6.37 9.18 1.89 5.76 
SVD-GW-KAM 6.83 9.65 2.35 6.23 
SVD-LSA-KAM 7.36 10.48 2.87 6.74 
SVD-bSA-KAM 8.25 12.13 3.12 6.88 

Table 1. Comparative performance for music/voice sepa-
ration. 

As shown in Table 1, the best separation performance 
of the music from the mixed music signal is obtained 
with the proposed method, SVD-bSA-KAM, in terms of 
NSDR and NSIR. Compared to the other three methods, 
the basic method, STFT-GW-KAM, attains the worst re-
sults. And the proposed bSA delivers high performance 
result in the separation of vocal components. 

4. CONCLUSIONS 

In this paper, we proposed a β-order MMSE spectral am-
plitude estimation method based on kernel back-fitting 
for music/voice separation. The proposed algorithm en-
hances the basic kernel back-fitting algorithm through 
application of β-order MMSE spectral amplitude estima-
tion considering the perceptual properties of human audi-
tory system. The experimental results show that the pro-
posed method obtained better results compared to other 
existing methods. 

In future work, we will apply the method to spatial au-
dio reproduction applications running on smart phones. 
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