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ABSTRACT

We study the automatic identification of Western classi-
cal music styles by directly using chroma histograms as
classification features. Thereby, we evaluate the benefits
of knowing a piece’s global key for estimating key-related
pitch classes. First, we present four automatic key detec-
tion systems. We compare their performance on suitable
datasets of classical music and optimize the algorithms’
free parameters. Using a second dataset, we evaluate au-
tomatic classification into the four style periods Baroque,
Classical, Romantic, and Modern. To that end, we calcu-
late global chroma statistics of each audio track. We then
split up the tracks according to major and minor keys and
circularly shift the chroma histograms with respect to the
tonic note. Based on these features, we train two individ-
ual classifier models for major and minor keys. We test the
efficiency of four chroma extraction algorithms for clas-
sification. Furthermore, we evaluate the impact of key de-
tection performance on the classification results. Addition-
ally, we compare the key-related chroma features to other
chroma-based features. We obtain improved performance
when using an efficient key detection method for shifting
the chroma histograms.

1. INTRODUCTION

In the field of Music Information Retrieval (MIR), a con-
siderable amount of research has been performed to clas-
sify music audio recordings according to different cate-
gories [3,29]. Beyond top-level genres such as Rock, Jazz,
or Classical, several attempts towards resolving subgenres
have been made. We dedicate ourselves to the subgenre
classification of Western classical music which has been
addressed sparsely in previous work.

There are plenty of possibilities to organize classical
music archives. Apart from the specific artists—soloists
or ensembles—, timbral properties such as the predomi-
nant instrument(s) may serve as categories [26]. We think
that the rather abstract concept pf musical style provides a
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more appropriate subgenre taxonomy. The specific appli-
cation of this idea leads to the task of composer identifica-
tion [4, 11, 15,22]. Beyond such a detailed taxonomy, we
restrict ourselves to more general categories—the histori-
cal periods Baroque, Classical, Romantic, and Modern. !
This naturally constitutes a simplification but may provide
a convenient starting point for finer analyses [6].

Several researchers have published studies on the ba-
sis of symbolic data such as score or MIDI representa-
tions [1,8,10,11,15,22,25]. However, we find some ben-
efits when directly dealing with audio recordings. First,
the audio incorporates more information than the score by
representing the “sounding reality” of the music to a higher
degree.? Second, audio-based methods enable nice appli-
cations for organizing and browsing today’s large archives
of classical music. Morevoer, such archives provide pre-
cious possibilities for data-driven musicological research
in a new quantitative dimension.

Studies based on symbolic data often make use of mu-
sical properties such as the use of specific intervals [1] or
chords [22]. Sometimes, characteristics of polyphony and
voice leading are considered as well [1,11]. Other methods
rely on more fundamental properties of harmony such as
the occurrence of pitch classes [10] and pitch class sets [8].
Usually, researchers statistically analyze these character-
istics to obtain classification features. These features are
then used as input for machine learning (ML) classifiers.

There are several limitations for harmonic analysis of
audio based on state-of-the-art signal processing algo-
rithms. Due to the restricted perfomance of automatic mu-
sic transcription ® , we build our method upon chroma fea-
tures that have been shown to suitably represent the pitch
class content of audio [7, 19]. Using chroma features, sev-
eral musical characteristics such as voice leading proper-
ties or interval and chord inversions cannot be resolved.
Furthermore, acoustic phenomena such as overtones and
timbre show considerable effect on the chroma features.
Scholars proposed several attempts to approach these prob-
lems by enhancing the robustness of chroma [7,13,14,17].

Researches have proposed several chroma-based fea-

I Here, the Modern class refers to 20th century art music with some
stylistic distance from romantic music.

2 This observation particularly matters for older music such as the
Baroque style, where numerous conventions for practical performance
were known by the interpreters without notating them in the scores.

3 In particular, these algorithms highly depend on the orchestration.
On that account, automatic transcription is not reliable when dealing with
mixed music for piano, orchestra, and voices.
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ture types for classifying musical genres and styles. Tzane-
takis uses the predominant pitch class, its relative ampli-
tude, and the size of the predominant interval as features
[29]. Others extract chords from audio and classify based
on the chord types and progressions [24]. In [32], inter-
val and chord types are estimated from different chroma
resolutions. Furthermore, measures for quantifying tonal
complexity have been tested as classification features [33].

In this paper, we want to test a simpler approach that
directly uses chroma histograms as input for a classifier
(Section 2). For tonal music, the chroma distribution of
a piece is mainly influenced by the musical key. Usually,
the notes of the underlying scale and the most prominent
chords obtain high values—such as the tonic note or the
dominant note. We therefore test the benefits of knowing
the global key for classifying with chroma features. To that
end, we first compare four key detection methods (Sec-
tion 2.2) on suitable datasets of classical music and opti-
mize the algorithms’ parameters (Section 3.2). Second, we
perform classification experiments on a separate dataset of
1600 classical pieces (Section 3.3). As classification fea-
tures, we use chroma histograms that are shifted on the
basis of different key algorithms or ground truth key anno-
tations. We test the influence of considering the key as well
as the effect of training separate models for major and mi-
nor keys. Finally, we compare these features’ perfomance
against other chroma-based features introduced in earlier
work [32,33].

2. PROPOSED METHOD

In Western classical music, tonality and harmony play a
central part for establishing musical form, expression, and
style. The use of specific pitches, intervals, and chords—as
well as their progressions—constitute typical style mark-
ers. They hierarchically depend on each other and con-
tribute to the chroma distribution of a piece. Beyond the
high importance of the global key, modulations to other
keys entail the use of different chords and pitches. That
way, sections in foreign keys considerably contribute to
the global chroma histogram—depending on their length.
Apart from such harmonic characteristics, instrumentation
and timbre may affect the shape of the chroma distribution.
Let us consider a simple major triad: Depending on the in-
strumentation, the root, third, or fifth note may be more
pronounced leading to different chroma vectors.

Some of these differences may serve to resolve subtler
stylistic differences. In Figure 1, we show two chroma
histograms of symphony movements by Schumann and
Brahms, both in a major key and centered to their respec-
tive tonic note (C and F). Though these composers have
much in common—a part of their lifetime, the cultural
background, and several inspiring persons—the pieces
considerably differ in their pitch class histograms. One
reason may be the more complex harmony in Brahms’
music—the chromatic pitch classes such as Ff, Ct, and
Ab are enhanced compared to Schumann’s equivalents.
Moreover, Brahms’ instrumentation often emphasizes the
chords’ third notes. This could explain the increased val-

Schumann, 2nd symphony, 1st mvmt. (C major)

Eb Bb F C G D A E B F# C# G#

Brahms, 3rd symphony, 1st mvmt. (F major)
T L S

Ab Eb Bb F

C G D A E B F# C#

Figure 1. Chroma histograms for Schumann’s 2nd sym-
phony, 1st movement in C major (upper plot) and Brahms
3rd symphony, 1st movement in F' major (lower plot). The
histograms are arranged according to the circle of fifths and
centered to the respective tonic note. We normalize the dis-
tributions to the £ norm in order to ensure comparability.

ues for D, A, and E—the triad thirds of the main chords
BbM (subdominant), FM (tonic), and CM (dominant), re-
spectively. Another explanation for this observation could
be a modulation to the local key A major for a consid-
erable amount of time. Such modulations to third-related
mediant keys are common in late romantic music.

To describe such characteristics, the relative pitch
classes are important. Therefore, we need information
about the global key. Sometimes, this metadata is provided
in musical archives. However, such annotations are often
incomplete. For work cycles and multi-movement works,
we usually find only one key (“Symphony in F major”)
which single movements may differ from. For those rea-
sons, we test automatic methods for audio key detection
and evaluate the influence of their performance on the over-
all classification results. We also compare automatic key
detection to the use of ground truth key annotations.

Apart from the tonic note, the mode (major / minor) is
of high importance, since the harmonic structure of minor
pieces fundamentally differs from the one in major. To
that end, we split up our data and train a separate model
for each mode. Section 2.3 outlines the details of this idea.

2.1 Chroma Features

In audio signal processing, chroma features have been
shown to suitably represent tonal characteristics [7, 19].
For a chromagram, the spectrogram bins are mapped
into a series of 12-dimensional chroma vectors ¢ =
(co,c1,...,c11)T € R'¥2. These vectors represent the en-
ergy of the pitch classes that are independent from the oc-
tave. To reduce the influence of overtones and timbral
characteristics, several chroma extraction methods have
been proposed. We consider six different approaches:
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(i) CP. This algorithm [21] is based on a multirate filter
bank and published in the Chroma Toolbox [18]. We
use the Chroma Pitch as our baseline feature.

(i) CLP. Jiang et al. found improvement of chord recog-
nition when using logarithmic compression before
octave summarization. We use the Chroma Loga-
rithmic Pitch with compression parameter 77 = 1000
which performed best in [9].

(iii) CRP. Miiller and Ewert proposed a method to elim-
inate timbral information using the Discrete Cosine
Transform—Chroma-DCT-Reduced Log Pitch [17].

(iv) HPCP. These Harmonic Pitch Class Profiles con-
sider the overtones for the chroma computation [7].

(v) EPCP. In [27], Enhanced Pitch Class Profiles [13]
performed best in a chord matching experiment. This
algorithm makes use of an iterative procedure (har-
monic product spectrum). We use three iterations.

(vi) NNLS. Mauch introduced an approximate transcrip-
tion step based on a Non-Negative Least Squares
algorithm [14]. The resulting chroma features led
to a considerable boost of chord recognition perfor-
mance. The code is published as a “Vamp” plugin. *

We compute the initial chroma features with a resolution
of 10 Hz. In order to eliminate the influence of dynamics,
we normalize to the ¢! norm so that

N-1
llells = >2n=o leal = 1. (1)

2.2 Key Detection Algorithms

For automatic key detection, we compare four approaches
that have been tested successfully on classical music data.

(1) Template matching. For this standard method, the
distance between a chroma histogram and a key pro-
file is computed for each of the 24 keys. The profile
minimizing the distance gives the global key [28].

(2) Profile learning. Van de Par et al. improved the pro-
file matching algorithm by using a learning procedure
for the key profiles [30]. Furthermore, they emphasize
the beginning and ending section of the pieces. We ex-
tend this idea by separately weighting beginning and
ending section. Therefore, we introduce new parame-
ters 5 and -y to emphasize the beginning and ending,
respectively—along with the parameter « from [30].

(3) Symmetry model. Another class of key finding algo-
rithms makes use of geometrical pitch models [2, 5].
We use the symmetry model by Gatzsche and Mehnert
that was evaluated for key detection in [16].

(4) Final chord. The algorithm proposed in [31] consid-
ers the final chord to estimate the tonic note of the
global key—combined with a profile matching for es-
timating the mode. This algorithm was tested on three
datasets of classical music.

4 http://isophonics.net/nnls-chroma

2.3 Classification Features

The basic idea of this paper is to directly use chroma his-
tograms for classification of music styles. We therefore
sum up the M chroma vectors c!,...,c™ of a piece in
order to obtain a ¢; normalized chroma histogram h:

h=y ¢, h=h/|Mhl] @)

In order to compare the impact of the chroma compu-
tation method, we use four different chroma algorithms
from the ones presented in Section 2.1: CP, CLP, EPCP,
and NNLS.

As the main contribution of our work, we want to eval-
uate the relevance of key information for classification.
To this end, we test different combinations of key esti-
mation and classification algorithms. Using 3-fold cross-
validation, we randomly split our dataset into a training
fold (2/3) and a test fold (1/3). For the training stage, the
ground truth key annotations are used to split up the data
into pieces in major and minor modes. With the same key
information, we circularly rotate the chroma histograms so
that the tonic note is on the first position:

R = Ry mod 12 3
with k& € [0 : 11] and k* denoting the chroma index of the
tonic note (k* = 0 for C, etc.). For testing, we use one of
the four automatic key detection algorithms presented in
Section 2.2. With this key information, we split up the test
data according to the mode and again rotate each chroma
histogram with respect to the tonic note. The full process-
ing chain of our approach is shown in Figure 2.

To compare against existing methods, we use other
types of chroma-based classification features. In [32], a set
of template-based features for estimating the occurence of
interval and chord types has been proposed. To this end,
chroma features are smoothed to different temporal reso-
lutions followed by a multiplication of chroma values ac-
cording to interval and chord templates. Another group—
tonal complexity features—makes use of statistical mea-
sures on the chroma distribution in order to estimate the
tonal complexity of the music on different time scales [33].

3. EVALUATION

In order to estimate the classification performance on un-
seen data, we apply a two-step evaluation strategy. First,
we test the key detection performance of the four meth-
ods presented in Section 2.2 and optimize the algorithms’
free parameters (Section 3.2). Second, we perform classi-
fication experiments on a different dataset using a Random
Forest classifier with chroma histograms as input features.
We train separate models for major and minor pieces, re-
spectively. For estimating the importance of the algo-
rithm’s elements, we conduct several baseline experiments.

3.1 Datasets

In our studies, we make use of different datasets. To
evaluate key detection performance and optimize param-
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Figure 2. Flow diagram for the classification procedure. For performing cross-validation, the data is split up into training
and test set. Each set is sorted with respect to the mode by using different key algorithms or ground truth key annotations
(key 1/key 2), respectively. The trained models for major and minor keys are then used to classify the respective test data.

eters, we use three datasets of classical music record-
ings with corresponding key annotations. This data has
been used for evaluating key detection in published work
[23,30,31]. The first set (Symph) comprises classical and
romantic symphonies—each with all movements—from
11 composers containing 115 tracks in total. The sec-
ond one—a selection from Saarland Music Data Western
Music (SMD) [20]—includes music for solo instruments,
orchestra, and chamber music. The key annotations for
126 selected tracks that show clear tonality are available
on the corresponding website.> Third, we recompiled a
dataset of piano music recordings (Pno) used for key de-
tection in [23,30]. This data comprises 237 piano pieces
(Bach, Brahms, Chopin and Shostakovich). We consider
these datasets as training data for the key detection step,
thus justifying the overfitting procedure for the parameters.
For the classification experiments, we make use of an-
other dataset (Cross-Era) containing 1600 audio record-
ings of classical music as used in [32,33]. The data is
balanced with respect to the historical periods (each 400
tracks for the Baroque, Classical, Romantic, and Mod-
ern period) and instrumentation (200 piano pieces and 200
orchestral pieces per class). We collected expert annota-
tions for the key of 1200 tracks. The modern class has
not been considered due to a high amount of atonal pieces.
For atonal pieces, we assume little influence of key detec-
tion on classification with chroma histograms. ® The data
is not balanced with respect to the key or the mode (ma-
jor/minor). We show the key distribution in Figure 3.

3.2 Key Detection Experiments

For estimating the optimal parameters, we run each algo-
rithm with different parameter settings in a stepwise fash-
ion. To that end, we optimize each parameter by maximiz-
ing the weighted total performance A

Ay = (115 Agymph + 126 Asmp + 237 Appo) /478 (4)

3 http://www.mpi-inf.mpg.de/resources/SMD

6 For example, a dodecaphonic piece of music shows nearly equal
pitch class distribution. Thus, its chroma distribution is practically in-
variant to cyclic shifts.

160F - 1

120 . o

160 |

Figure 3. Key distribution (annotations) of the periods
Baroque, Classical, and Romantic (1200 pieces) in the
dataset Cross-Era. Major keys are shown in black and up-
ward direction, minor keys are in grey downwards. The
tonic notes are arranged according to the circle of fifths.

and fix the remaining parameters to default or best fit val-
ues. For the basic chroma features, we test the six types
presented in Section 2.1. We obtain the following results
for the different algorithms:

(1) Template matching. We test three pairs (maj/ min) of
profiles proposed by Krumhansl [12], Temperley [28],
and Gomez [7]. In our study, the latter ones performed
best. Though these profiles have been developed in
combination with HPCP features, NNLS features out-
performed these features (84.7 %) followed by CLP.

(2) Profile learning. For the profile training, we per-
formed a cross-validation with 98 % training data, 2 %
test data, and 5000 repetions following [30]. We found
best performance for CLP chroma features (92.3 %)—
closely followed by NNLS—together with parameters
a =2, =1,and v = 0.25. We could not reach the
result presented in [30] (98 % on the Pno dataset). As
a reason for this, we assume that the specific chroma
features presented in that work (including a masking
model) provide additional benefits.
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Figure 4. Evaluation of different key detection algorithms. Here, we show the individual key recognition accuracies for
the three datasets of classical music. As the basic feature, we compare six types of chroma features.

(3) Symmetry model. This algorithm worked best in con-
junction with NNLS chroma. The optimal pitch set en-
ergy threshold was found at frg = 0.12. The angular
vector value came out best at wgy, = 0.53 leading to
a total performance of 82.6 %.

(4) Final chord. The final chord algorithm obtained opti-
mal results on the basis of CP chroma features. For
the parameters, [N 19 final frames, a root-scale
weight exponent of s = 0.9, an energy threshold of
fe = 0.19%, and the weight exponents template m(?)

have come out best (93.7 % accuracy).

The overall results for the key detection evaluation are
shown in Figure 4 for the individual datasets. All al-
gorithms considerably depend on the chroma extraction
method—especially when the data includes piano music
(Pno, SMD). NNLS features often obtained the best re-
sults and seem to be the most stable basis for key detec-
tion methods. EPCP features are not a good choice for
this purpose. The profile learning and the final chord algo-
rithms performed similarly. Hereby, the first one is rather
data-dependent whereas the final chord algorithms requires
a fine parameter tuning. In the following, we use the fi-
nal chord algorithm that showed a slightly better total rate
(93.7 %) compared to the profile training method (92.3 %).

Finally, we test the four key detection methods on a
subset of the Cross-Era dataset (Section 3.1) using 1200
tracks with key annotations. For each method, we use the
feature and parameter setting performing best in the previ-
ous experiments.” We obtain a performance of 83.9 % for
the template matching algorithm (1), 87.1 % for the pro-
file learning (2), 80.4 % for the symmetry model (3), and
85.4 % for the final chord based method (4). Compared
to the optimization datasets, the performance is worse and
the differences between the methods are smaller. Profile
learning and final chord stay with best results. However,
the learning strategy (2) seems to be more robust than the
parameter-dependent final chord algorithm (4).

3.3 Classification Experiments

By using the method and parameters performing best in
Section 3.2, we now test the influence of key detection
on automatic style classification based on the Cross-Era
dataset. We use a Random Forest (RF) classifier. In or-
der to avoid problems due to the curse of dimensionality,

7 For the profile learning approach, the profiles are also trained on the
previously used datasets Symph, SMD, and Pno.

Major m Minor
0.7
I
0.65
" I

0.6 I i

0.55
CcpP CLP EPCP NNLS

Figure 5. Classification accuracies for different types
of chroma features for classification, four classes, key I
= key 2 = final chord. Bars and error marks indicate
mean and standard deviation over 100 initializations of the
cross-validation. Here, we do not use LDA (only twelve-
dimensional features).

we transform the feature space using Linear Discriminant
Analysis (LDA) with three output dimensions. For eval-
uation, we conduct a 3-fold cross-validation. We use the
chroma histograms over the full piece as classification fea-
tures. As our basic idea, we rotate the chroma histograms
to the tonic note (Section 2.3). In the ideal setting, we use
the ground truth key annotations for the training data (key
1). For the test data (key 2), we use the automatically de-
tected key from the final chord algorithm (see Section 3.2).

Major and minor keys exhibit very different tonal struc-
tures resulting in distinct typical chroma distributions. The
mode-related properties in the chroma distribution may
heavily overlay the more subtle differences originating
from style. We therefore split up the data into major and
minor pieces by using key annotations (training set, key 1)
or automatic key detection (test set, key 2), respectively.
On the resulting training data sets, we train separate classi-
fication models for major and minor keys. The test data is
then classified into style periods using the appropriate clas-
sifier model. This procedure is visualized in Figure 2. We
then repeat the classification by using the next fold as test
data. The whole cross-validation is performed 100 times
with new random initialization of the folds.

First, we test the influence of the specific chroma fea-
ture implementation on the classification performance. In
this experiment, we use the automatic key (final chord al-
gorithm) for both training and test. The results are shown
in Figure 5. Classification performance considerably de-
pends on the chroma type. Here, logarithmic compression
(CLP)—enhancing weak components—does not improve
classification performance. CP and EPCP features perform

ng
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Figure 7. Classification accuracies for different combinations of chroma-based features, four classes, NNLS features. The
varying dimensionality of the feature collections is reduced to three dimensions by using LDA.
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Figure 6. Classification accuracies based on different key
detection methods (for key I and key 2), three classes,
NNLS features. Here, we do not use LDA transformation.

Table 1. Classification results for different key method
combinations, three classes, NNLS features.

Key 1 Key 2 ‘ Major  Minor
Ground truth  Final chord | 70.1% 66.7 %
Final chord Final chord | 694% 71.5%

similar whereas NNLS features outperform the others by
several percentage points. We therefore use NNLS chroma
features for the remaining experiments.

Next, we evaluate the dependence of the key-related
chroma features on the performance of the automatic key
detection. To this end, we once use each of the four meth-
ods from Section 3.2 both for training and test data. Since
we have no ground truth key annotations for the modern
era, we just perform classification of the remaining three
classes (1200 pieces). Classification results are similar
with all key methods (Figure 6). For profile learning and
final chord key detection, the results partly outperform the
classification based on ground truth key annotations. We
conclude that some of the errors in key detection may have
beneficial effects on classification performance. Compar-
ing the classification results with the key detection per-
fomance on Cross-Era, we find similar behaviour. Thus,
a good key detection leads to better classification, some-
times outperforming the use of ground truth key annota-
tions. When using ground truth key for training (key 1)
and an automatic method for testing (key 2), performance
values change but do not generally increase (Table 3.3).

In the last study, we compare different types of clas-
sification features (Figure 7). For the baseline chroma

experiment, we do not use any key information but use
the original (absolute) NNLS histograms as classifica-
tion features—without Major/Minor discrimination (one
model for all). Baseline Maj/Min makes use of ground
truth key annotations for mode selection. This does not
lead to increased classification results. For the key-related
chroma method, we use NNLS rotated with respect to the
final chord key, for training and test.® The use of key de-
tection boosts classification results by almost 10 %. Next,
we combine the key-related chroma histograms with other
chroma-based features such as tonal complexity or tem-
plate-based features (Section 2.3) leading to improvements
of almost 20 %. Combining all three types of features does
not further increase classification accuracies.

When comparing our results with the outcome of [32,
33], we do not obtain a general performance boost through
adding key-related chroma features. Both complexity [33]
and template features [32] alone performed similar in
the respective experiments—compared to combining them
with our features. However, we already obtain remarkable
results with key-related features only. These features can
be computed with a high computational effiency.® As the
main difference, complexity and template features capture
local properties whereas global chroma histograms do not.

4. CONCLUSION

We evaluated four automatic key detection methods and
optimized their parameters using three datasets of classical
music. On a separate dataset, we performed style classi-
fication experiments using key-related chroma histograms
as classification features. With such features, the use of
an efficient key detection algorithm improves classification
accuracy. Thus, automatic key detection constitutes a use-
ful step for such music classification systems. However,
involving local chroma-based features leads to a better per-
formance than only using global chroma histograms.

Acknowledgments: C.W. has been supported by the
Foundation of German Business (Stiftung der Deutschen
Wirtschaft). He thanks Daniel Gértner for fruitful discus-
sions and Judith Wolff for contributing to key annotations.

8 The difference between this result and the NNLS performance in Fig-
ure 5 is due to using LDA transformation here.

9 Since we only use global chroma, a very coarse time resolution for
the time-frequency transform could be applied.
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