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ABSTRACT

Although content is fundamental to our music listening
preferences, the leading performance in music recommen-
dation is achieved by collaborative-filtering-based methods
which exploit the similarity patterns in user’s listening his-
tory rather than the audio content of songs. Meanwhile,
collaborative filtering has the well-known “cold-start” prob-
lem, i.e., it is unable to work with new songs that no one
has listened to. Efforts on incorporating content informa-
tion into collaborative filtering methods have shown suc-
cess in many non-musical applications, such as scientific
article recommendation. Inspired by the related work, we
train a neural network on semantic tagging information as
a content model and use it as a prior in a collaborative fil-
tering model. Such a system still allows the user listening
data to “speak for itself”. The proposed system is evalu-
ated on the Million Song Dataset and shows comparably
better result than the collaborative filtering approaches, in
addition to the favorable performance in the cold-start case.

1. INTRODUCTION

Music recommendation is an important yet difficult task
in music information retrieval. A recommendation system
that accurately predicts users’ listening preferences bares
enormous commercial value. However, the high complex-
ity and dimensionality of music data and the scarcity of
user feedback makes it difficulty to create a successful mu-
sic recommendation system.

Two primary approaches exist in recommendation: col-
laborative filtering and content-based methods. For mu-
sic, the state-of-the-art recommendation results have been
achieved by collaborative filtering methods, which requires
only information on users’ listening history rather than the
musical content for recommendation. The central assump-
tion of this model is that a user is likely to accept a song
that is liked by users who have similar taste. A major cate-
gory of collaborative filtering approaches is based on latent
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factor model. It assumes that a low-dimensional represen-
tation exists for both users and songs such that the compat-
ibility between a user and a song, modeled as their inner
product in this latent space, predicts the user’s fondness of
the song. In the case that user feedback is implicit (e.g.,
whether or not the user has listened to a particular song),
the weighted matrix factorization from Hu et al. [6] works
particularly well. Details regarding collaborative filtering
will be further discussed in Section 2.1.

On the other hand, modeling musical content for the
purpose of taste prediction is difficult due to the structural
complexity present in music data which is hard to capture
by simple models. Deep learning has shown its power in
various pattern recognition tasks with its capability of ex-
tracting hierarchical representations from raw data. In mu-
sic recommendation, van den Oord et al. [13] have experi-
mented with neural networks on predicting the song latent
representation from musical content.

It is natural to combine collaborative filtering and con-
tent models in recommendation to utilize different sources
of information. A successful attempt from Wang and Blei
[14], which joins a content model on article with collab-
orative filtering, achieves good performance on scientific
article recommendation.

Inspired by these mentioned above, we create a content-
aware collaborative music recommendation system. As the
name suggests, the system has two components: the con-
tent model and the collaborative filtering model. To obtain
a powerful content model, we pre-train a multi-layer neu-
ral network to predict semantic tags from vector-quantized
acoustic feature. The output of the last hidden layer is
treated as a high-level representation of the musical con-
tent, which is used as a prior for the song latent represen-
tation in collaborative filtering. We evaluate our system
on the Million Song Dataset and show competitive perfor-
mance to the state-of-the-art system.

2. RELATED WORK

In this section we review important relevant work. First
we give an overview of matrix factorization model for rec-
ommendation, especially for implicit feedback. Then we
describe two models which are closely related to ours: col-
laborative topic model for article recommendation and deep
content-based music recommendation.
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2.1 Recommendation by matrix factorization

A widely used approach to recommendation is collabora-
tive filtering, where items are recommended to a user based
on other users with similar patterns of item consumption.
Matrix-factorization-based latent factor models [6, 8] are
among the most successful collaborative filtering methods.

In a matrix factorization recommendation model, we
represent both users and items in a shared low-dimensional
space of dimension K, where user u is represented by a la-
tent factor ✓u 2 RK and item i is represented by a latent
factor �i 2 RK . To make a prediction about the prefer-
ence of user u on item i, we simply take the dot product
between the two r̂ui = ✓T

u �i. To estimate user and item
factors, we can minimize the squared loss between the es-
timated preference and actual responses

P

u,i(rui� r̂ui)2,
with `2 regularization on the factors to prevent overfitting.
Alternating least squares (ALS) can be employed for effi-
cient optimization. Equivalently, we can formulate a prob-
abilistic matrix factorization model [12] with the following
generative process:

• For each user u, draw user latent factor:

✓u ⇠ N (0, ��1
✓ IK),

• For each item i, draw item latent factor:

�i ⇠ N (0, ��1
� IK),

• For each user-item pair (u, i), draw feedback:

rui ⇠ N (✓T
u �i, c

�1
ui ),

and obtain the same estimates via maximum a posteriori.
Here cui represents our confidence on the corresponding
response rui, i.e., larger value of cui indicates that there
is less uncertainty about the response rui, and vice versa.
This is especially crucial in the case of implicit feedback
(e.g., whether user u listened to song i), because of its
noisy nature. Hu et al. [6] propose a simple heuristic for
setting the values of cui for implicit feedback 1 :

cui = 1 + ↵ log(1 + rui/✏)

where ↵ and ✏ are tunable hyperparameters. This method
achieves the state-of-the-art recommendation performance
in the implicit feedback case.

2.2 Collaborative topic model

Due to its content-free nature, collaborative filtering ap-
proaches can be applied in a wide range of domains. They
perform well on what is called in-matrix predictions, i.e.,
recommending items that have been consumed by some
users. However, this approach suffers from the well-known
problem that it is unable to recommend new items that no
user has consumed, or making out-of-matrix predictions,

1 In [6], the observational model is on the binary indicator variable
p

ui

=1{r
ui

> 0} rather than r
ui

, i.e., p
ui

⇠ N (✓T

u

�
i

, c�1

ui

). How-
ever, in this paper the response r

ui

is itself binary, indicating whether
user u has listened to song i. Thus we treat r

ui

and p
ui

interchangeably.

where content-based models are better suited. Many ef-
forts have been made to incorporate content into collabora-
tive filtering. Wang and Blei [14] propose the collaborative
topic regression (CTR) model for scientific article recom-
mendation, which is particularly relevant to our proposed
method.

There are two components in CTR: a matrix factoriza-
tion collaborative filtering model (as described in Section
2.1) and a latent Dirichlet allocation (LDA) article content
model. LDA [2] is a mixed-membership model on docu-
ments. Assuming there are K topics � = �1:K , each of
which is a distribution over a fixed set of vocabulary, LDA
treats each document as a mixture of these topics where
the topic proportion ⇡i is inferred from the data. One
can understand LDA as representing documents in a low-
dimensional “topic” space with the topic proportion being
their coordinates. With this interpretation, the generative
process of CTR is as follows:

• For each user u, draw user latent factor:
✓u ⇠ N (0, ��1

✓ IK),

• For each document i,

– Draw topic proportion ⇡i ⇠ Dirichlet(↵) 2 ,
– Draw latent factor �i ⇠ N (⇡i, �

�1
� IK),

• For each user-document pair (u, i), draw feedback:

rui ⇠ N (✓T
u �i, c

�1
ui ).

We can see CTR differs from [6] in that CTR assumes
that the item latent factor �i is close to the topic propor-
tion ⇡i but could deviate from it if necessary. This allows
the user-item interaction data to “speak for itself”. An at-
tractive characteristic of CTR is its capability of making
out-of-matrix predictions. This is done by using the topic
proportion ⇡i alone as the item latent factor: r̂ui = ✓T

u ⇡i,
which is not possible in the traditional collaborative filter-
ing model.

Although CTR achieves better recommendation perfor-
mance than pure collaborative filtering, it does not scale
well with large data. Since the model is not condition-
ally conjugate: the prior on �i comes from a Dirichlet-
distributed random variable ⇡i, topic proportion ⇡i cannot
be updated analytically and slower numerical optimization
method is required. To address this problem, Gopalan et
al. [5] propose the collaborative topic Poisson factoriza-
tion (CTPF). This model replaces the Gaussian likelihood
and Gaussian prior in CTR with Poisson likelihood and
gamma prior, thus becoming conditionally conjugate with
closed-form updates. Experiments on large-scale scientific
article recommendation demonstrate that CTPF performs
significantly better than CTR.

The main difference that sets our method apart from
collaborative topic model is the content model. As a fea-
ture extractor, LDA can only produce linear factors due to
its bilinear nature. On the other hand, multi-layer neural
network used by in our system is capable of capturing the
non-linearities in the feature space.

2 The generative process for words is omitted for brevity throughout
the paper. Please refer to [14] for details.
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2.3 Deep content-based music recommendation

Previous attempts on content-based music recommenda-
tion have achieved promising results. van den Oord et
al. [13] utilize a neural network to map acoustic features
to the song latent factors learned from the weighted ma-
trix factorization [6]. As a result, given a new song that
no one has ever listened to, a latent factor can still be pre-
dicted from the network and recommendation can be done
in the same fashion as with a regular collaborative filtering
model.

Our method is very similar to this approach, but we will
point out two major differences:

• First, the neural network is used for different pur-
poses. We use it as a content feature extractor, just
like LDA in the collaborative topic model. The neu-
ral network in [13] maps content directly to the la-
tent factors learned from pure collaborative filtering,
and the resulting model is expected to operate simi-
larly to collaborative filtering even when usage data
is absent.

• Since the neural network is trained to map content
to the latent factors learned from the weighted ma-
trix factorization, the performance of [13] is unlikely
to surpass that of the weighted matrix factorization.
What we propose in this paper, on the other hand,
uses content as an addition to the weighted matrix
factorization, in a similar manner as the collabora-
tive topic model described in Section 2.2. As we
show in the experiment, we are able to achieve better
result than the weighted matrix factorization when
we only have limited amount of user feedback.

Other approaches that hybridize content and collabora-
tive models include Yoshii et al. [17], McFee et al. [11],
and Wang and Wang [15]. [17] train a three-way proba-
bilistic model that joins user, item, and content by a latent
“topic” variable; the model focuses on explicit feedback
(user ratings). [11] take a similar approach to [13] and learn
a content-based similarity function from collaborative fil-
tering via metric learning. [15] also use a neural network
to incorporate music content into the collaborative filtering
model. The major difference is that in [15] the output of the
neural network is treated as item factor and the neural net-
work is trained to minimize a collaborative-filtering-based
loss function. Therefore the content model itself does not
have explicit musicological meaning.

3. PROPOSED APPROACH

Adopting the same structure as that of CTR, our system
consists of two components: a content model which is
based on a pre-trained neural network and a collaborative
filtering model based on matrix factorization.

3.1 Supervised pre-training

Inspired by the success of transfer learning in computer
vision which exploits deep convolutional neural networks

[9], in our system we pre-train a multi-layer neural network
in a supervised semantic tagging prediction task and use it
as the content model.

Our training data comes from Liang et al. [10] which
consists of 370K tracks from the Million Song Dataset
and the pre-processed last.fm data with a vocabulary of
561 tags, including genre, mood, instrumentation, etc. We
use the Echonest’s timbre feature, which is very similar to
MFCC. To get the song-level features, we vector-quantize
all the timbre features following the standard procedure:
We run the k-means algorithm on a subset of randomly se-
lected training data to learn J = 1024 cluster centroids
(codewords). Then for each song, we assign each segment
(frame) to the cluster with the smallest Euclidean distance
to the centroid. We aggregate the VQ feature of song i
(xi 2 RJ

+) by counting the number of assignments to each
cluster across the entire song and then normalize it to have
unit `1 norm to account for the various lengths.

We treat music tagging as a binary classification prob-
lem: For each tag, we make independent predictions on
whether the song is tagged with it or not. We fit the output
of the network f(xi) 2 R561 into logistic regression clas-
sifiers. Therefore, given tag labels yit 2 {�1, 1} for song i
and tag t, the network is trained to minimize the following
loss:

Ltag =
P

i,t log(1 + exp(�yitft(xi))

Here we use a network with three fully-connected hid-
den layers and ReLU activations with dropout. Each layer
has 1,200 neurons. Stochastic gradient descent with mini-
batch of size 100 is used with AdaGrad [3] for adjusting
the learning rate 3 . We notice that both dropout and Ada-
Grad are crucial for getting the good performance. The
tagging performance is reported in Section 4.1.

3.2 Content-aware collaborative filtering

We can interpret the output of the last hidden layer hi 2
RFh (here Fh = 1200) as a latent content representation
of song i. Because of the way the network is trained,
this latent representation is supposed to be highly corre-
lated to the semantic tags (“topics” of music). Therefore,
we can take a similar approach to the collaborative topic
model and use this representation in a collaborative filter-
ing model.

The generative process for the proposed model is as fol-
lows:

• For each user u, draw user latent factor:

✓u ⇠ N (0, ��1
✓ IK).

• For each song i, draw song latent factor:

�i ⇠ N (Whi, �
�1
� IK).

• For each user-song pair (u, i), draw implicit feed-
back (whether user u listened to song i):

rui ⇠ N (✓T
u �i, c

�1
ui ).

3 The source code for training the neural network is available at:
https://github.com/dawenl/deep_tagging
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Here the weight matrix W 2 RK⇥Fh transforms the learned
content representation from the neural networks into the
collaborative filtering latent space via Whi. The precision
parameter �� balances how the song latent vector �i devi-
ates from the content feature. We set the confidence cui in
the same way as in Section 2.1.

We want to emphasize that our proposed model is content-
aware instead of content-based. Just like collaborative topic
model, our proposed model is still fundamentally based on
collaborative filtering. The content model is only used as a
prior and can be deviated if the model thinks it is necessary
to explain the data.

For notational convenience, we define the concatenated
user latent factors matrix ⇥

4
= [✓1| · · · |✓U ] 2 RK⇥U and

song latent factors matrix B
4
= [�1| · · · |�I ] 2 RK⇥I . We

estimate the model parameters {⇥, B, W} via maximum a
posteriori.

The complete log-likelihood is written as:

L =�
X

u,i

cui

2
(rui � ✓T

u �i)
2 � �✓

2

X

u

✓T
u ✓u

� ��

2

X

i

(�i �Whi)
T (�i �Whi)

Take the gradient of the complete log-likelihood with re-
spect to the model parameters and set it to 0, we can obtain
the following closed-form coordinate updates:

✓u  (BCuBT + �✓IK)�1BCuru (1)

�i  (⇥Ci⇥
T + ��IK)�1(⇥Ciri + ��Whi) (2)

WT  (HT H + �W IFh
)�1HT BT (3)

where Cu 2 RI⇥I is a diagonal matrix with cui, i =
1, · · · , I as its diagonal elements, and ru 2 RI is the feed-
back for user u. Ci and ri are similarly defined. H 2
RI⇥Fh is the concatenated output from the last hidden layer
[h1| · · · |hI ]T . When updating W , we add a small ridge
term �W to the diagonal of the matrix to regularize and
avoid numerical problems when inverting. Alternating be-
tween updating ⇥, B, and W , we are guaranteed to reach
a stationary point of the complete log-likelihood.

The same technique used in [6] to speed up computation
can be applied here. This enables us to apply our model to
large-scale music corpus and user-item interaction, which
is not possible for CTR.

After the model is trained, we can make in-matrix pre-
diction by r̂ui = ✓T

u �i. Similar to the collaborative topic
model, we can also make out-of-matrix prediction for songs
that no one has listened to by only using the content r̂ui =
✓T

u (Whi).

4. EVALUATION

We first evaluate our system on the pre-training tag predic-
tion task to ensure the quality of the extracted features, and
then measure its recommendation performance in compar-
ison with related models 4 .

4 https://github.com/dawenl/content_wmf contains the
source code for training the proposed model and reproducing the experi-

Model Prec Recall F-score AROC MAP
SPMF 0.127 0.146 0.136 0.712 0.120
NNet 0.184 0.207 0.195 0.781 0.178

Table 1: Annotation and retrieval performance on the Mil-
lion Song Dataset from Poisson matrix factorization with
stochastic inference (SPMF) [10] and the pre-trained neu-
ral network (NNet) described in Section 3.1. The standard
error is on the order of 0.01, thus not included here.

4.1 Tag prediction

Evaluation tasks and metrics We evaluate the pre-trained
neural network on semantic tags with an annotation task
and a retrieval task. We use the same dataset in Liang et al.
[10] from the Million Song Dataset [1] and compare with
their result which, to our knowledge, is the state-of-the-art
performance on large-scale tag prediction. Note that we
only use tag prediction as a proxy to measure the quality
of the content model and do not argue for our approach as
an optimal one to automatic music tagging.

For the annotation task we seek to automatically tag un-
labeled songs. To evaluate the model’s ability to annotate
songs, we compute the average per-tag precision, recall,
and F-score on the held-out test set. For the retrieval task,
given a query tag we seek to provide a list of songs which
are related to that tag. To evaluate retrieval performance,
for each tag in the vocabulary we ranked each song in the
test set by the predicted probability. We then calculate the
area under the receiver-operator curve (AROC) and mean
average precision (MAP) for each ranking.

Tagging performance and discussion The results are re-
ported in Table 1, which show that the pre-trained neu-
ral network performs significantly better than the Poisson-
factorization-based approach. This is not surprising for
two reasons: 1) Here we treat tag prediction as a super-
vised task and train a multi-layer neural network, while
in [10] the problem is formulated as an unsupervised learn-
ing task to account for the uncertainty in the user-generated
tags (which incidentally can be considered as a typical ex-
ample of implicit feedback). 2) Similar to LDA, Poisson
factorization can only capture linear factor, whose expres-
sive power is much weaker than that of a multi-layer neural
network.

Nevertheless, the results confirm that our pre-trained
neural network can be considered as an effective content
feature extractor and we will use the output of the last hid-
den layer as the content feature.

Note that our neural network is relatively simple and
does not directly use raw acoustic features (e.g., log-mel
spectrograms) as input. It is reasonable to believe that with
a more complex network structure and low-level acoustic
feature, we should be able to achieve better tagging per-
formance and obtain a more powerful content feature ex-
tractor, which could further boost the performance of our
proposed recommendation method.

mental results for recommendation in Section 4.2.
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Model R@40 R@80 R@120 R@160 R@200 NDCG
PMF [4] 0.1021 0.1533 0.1908 0.2206 0.2456 0.2419
CTPF [5] 0.1031 0.1511 0.1861 0.2138 0.2370 0.2395
WMF [6] 0.1722 0.2367 0.2803 0.3133 0.3397 0.2881

CF + shallow 0.1724 0.2368 0.2803 0.3131 0.3396 0.2883
CF + deep 0.1722 0.2365 0.2800 0.3129 0.3394 0.2882

Table 2: In-matrix performance on the DEN subset with proposed and competing methods.

4.2 Recommendation

Data preparation We use the Taste Profile Dataset which
is part of the Million Song Dataset to evaluate the recom-
mendation performance. It contains listening history in the
form of play counts from one million users with more than
40 million (user, song, play count) triplets. We first bina-
rize all the play counts 5 and create two complementary
subsets (denoted as DEN and SPR):

For the DEN subset, we intend to create a reasonably
dense subset so that the traditional collaborative filtering
model will have good performance. We remove the users
who have less than 20 songs in their listening history and
songs that are listened to by less than 50 users, obtaining a
subset with 613,682 users and 97,414 songs with more than
38 million user-song pairs (sparsity level 0.064%). For the
SPR subset, on the contrary, we only keep the users who
have less than 20 songs in their listening history and songs
that are listened to by less than 50 users, yielding a highly
sparse (0.002%) subset with 564,437 users and 260,345
songs.

We select 5% of the songs from DEN (4,871) for out-
of-matrix prediction. For both subsets we split 20% and
10% as test and validation sets, respectively. Validation
set is used to select hyperparameters, as well as monitor
convergence by computing predictive likelihood.

Competing methods We compare our proposed method
(denoted as CF + deep) with weighted matrix factorization
(WMF) [6], as well as the following three methods:

CF + shallow: A simple baseline where we directly use
the normalized VQ feature xi in place of the feature ex-
tracted from the neural network hi. This baseline is mainly
used to demonstrate the necessity of an effective feature
extractor for out-of-matrix prediction.

Poisson matrix factorization (PMF) [4]: Just like WMF,
PMF is a matrix factorization model for collaborative fil-
tering. Instead of Gaussian likelihood and priors on the la-
tent factors, it utilizes Poisson likelihood model and gamma
priors. The biggest advantage of PMF is computational.
As shown in [4], the inference algorithm has complexity
that scales linearly with the number of non-zero entries in
the user-item matrix.

Collaborative topic Poisson factorization (CTPF) [5]:
This model incorporates the content information into PMF
in the same way as CTR. Additionally, it is conditionally
conjugate with closed-form updates and enjoys the same

5 In practice, we find that the performances using actual play counts
and binarized indicators are very close for our model.

computational efficiency as PMF. Therefore, it can be ap-
plied to large-scale dataset without delicate engineering.

Based on our argument in Section 2.3, we do not di-
rectly compare with [13] because it is sufficient to compare
with WMF. For out-of-matrix recommendation evaluation,
we can only compare with CTPF and CF + shallow. In
all the experiments, the dimensionality of the latent space
K = 50. We select ↵ = 2 and ✏ = 10�6 to compute the
confidence cui. For WMF, CF + shallow, and CF + deep,
the model parameters ⇥, B and W (if any) are initialized
to the same values.

Evaluation metrics To evaluate different algorithms, we
produce a ranked list of all the songs (excluding those in
the training and validation sets) for each user based on the
predicted preference r̂u.

Precision and recall are commonly used evaluation met-
rics. However, for implicit feedback, the zeros can mean
either the user is not interested in the song or more likely,
the user does not know the song. This makes the precision
less interpretable. However, since the non-zero rui’s are
known to be true positive, we instead report Recall@M ,
which only considers songs within the top M in the ranked
list. For each user, the definition of Recall@M is

Recall@M =
# songs that the user listened to in top M

total # songs the user has listened to
.

In addition to Recall@M , we also report (untruncated)
normalized discounted cumulative gain (NDCG) [7]. Un-
like Recall@M which only focuses on top M songs in the
predicted list, NDCG measures the global quality of rec-
ommendation. In the meantime, it also prefers algorithms
that place held-out test items higher in the list by applying
a discounted weight. Given a ranked list of songs from the
recommendation algorithm, for each user NDCG can be
computed as follows:

DCG =
I

X

i=1

2reli � 1

log2(i + 1)
; NDCG =

DCG
IDCG

.

Given our binarized data, the reverence reli is also binary:
1 if song i is in the held-out user listening history and 0
otherwise. IDCG is the optimal DCG score where all the
held-out test songs are ranked top in the list. Therefore,
larger NDCG values indicate better performance.

Results on the DEN subset The model hyperparameters
�✓ = �W = 10 and �� = 100 are selected from the valida-
tion set based on NDCG. The in-matrix and out-of-matrix
performances are reported in Table 2 and 3, respectively.
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Model R@40 R@80 R@120 R@160 R@200 NDCG
CTPF [5] 0.0256 0.0700 0.1440 0.1869 0.2086 0.1271

CF + shallow 0.0503 0.0894 0.1218 0.1514 0.1778 0.1429
CF + deep 0.0910 0.1461 0.1881 0.2241 0.2550 0.1605

Table 3: Out-of-matrix performance on the DEN subset with proposed and competing methods.

Model R@40 R@80 R@120 R@160 R@200 NDCG
WMF [6] 0.1137 0.1286 0.1378 0.1449 0.1505 0.1415

CF + shallow 0.1138 0.1286 0.1377 0.1449 0.1504 0.1416
CF + deep 0.1140 0.1289 0.1378 0.1451 0.1507 0.1417

Table 4: In-matrix performance on the SPR subset with proposed and competing methods.

All the metrics are averaged across 612,232 users in the
held-out test user-item pairs.

We can see that with sufficient amount of user feedback,
there is almost no difference in performance among WMF,
CF + shallow, and CF + deep 6 – there is not a single model
which is consistently better. This is understandable, since
both CF + shallow and CF + deep are fundamentally col-
laborative filtering models. With enough user feedback,
the model is able to produce meaningful recommendation
without resorting to the content features. Moreover, CF
+ shallow, which has access to more content information,
does slightly better than CF + deep.

One observation from Table 2 is that adding content fea-
tures does not necessarily improvement the performance.
Unlike CF + deep, CTPF falls behind its content-free coun-
terpart PMF on both Recall@M and NDCG. This is pos-
sibly due to the insufficient feature extraction capability of
the topic model (LDA) on the rich musical data.

The superiority of CF + deep is more obvious on the
out-of-matrix predictions performance shown in Table 3.
We can see a larger margin between CF + deep and CF
+ shallow, as compared to their close performance on in-
matrix predictions. This suggests the importance of a pow-
erful feature extractor in the absence of usage data. Even
a simple linear LDA model in CTPF can be more effec-
tive than CF + shallow at predicting songs that the users
listened to in the held-out test set.

Results on the SPR subset We repeat the in-matrix eval-
uation on the highly sparse SPR subset. The model hyper-
parameters �✓ = �W = 10�2 and �� = 1 are selected
from the validation set. The performance is reported in Ta-
ble 4. All the metrics are averaged across 564,437 users in
the held-out test user-item pairs.

Again, the overall differences among all three methods
are relatively minor. However, with very limited user feed-
back, both CF + shallow and CF + deep outperform the
content-free WMF. More importantly, CF + deep consis-
tently improves over CF + shallow, which indicates the
importance of an effective feature extractor.

6 There is little point in arguing for the statistical significance of the
difference, since given the number of users to average over, the standard
error is vanishingly small.

5. CONCLUSION

In this paper we present a content-aware collaborative mu-
sic recommendation system that joins a multi-layer neu-
ral network content model with a collaborative filtering
model. The system achieves the state-of-the-art perfor-
mance in music recommendation given content and im-
plicit feedback data.

A possible future direction is to incorporate ranking-
based loss function, e.g., the weighted approximate-rank
pairwise (WARP) loss in [16] into the collaborative fil-
tering model. We normally evaluate recommendation al-
gorithms using ranking-based metrics (e.g. Recall@M
and NDCG), but the model is trained using squared loss
function. It would be more natural to directly optimize a
ranking-based loss function.
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