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ABSTRACT 

The similarity between linguistic tones and melodic pitch 
contours in Beijing Opera can be captured either by the 
contour shape of single syllable units, or by the pairwise 
pitch height relations in adjacent syllable units. In this 
paper, we investigate the latter problem with a novel ma-
chine learning approach, using techniques from time se-
ries data mining. Approximately 1300 pairwise contour 
segments are extracted from a selection of 20 arias. We 
then formulate the problem as a supervised machine-
learning task of predicting types of pairwise melodic rela-
tions based on linguistic tone information. The results 
give a comparative view of fixed and mixed-effects mod-
els that achieved around 70% of maximum accuracy. We 
discuss the superiority of the current method to that of the 
unsupervised learning in single-syllable-unit contour 
analysis of similarity in Beijing Opera. 

1. INTRODUCTION 

One of the most salient aspects of Chinese operas is the 
role of various dialects and their distinct tone contours. In 
the musicological study of Beijing opera, the similarity 
between linguistic tone contours of the lyrics and the vo-
cal melodic contours is a classic problem that arises from 
the nature of Chinese tone languages. In a tone language, 
as opposed to an intonation language, the pitch contour of 
a speech sound (often a syllable) can be used to distin-
guish lexical meaning. In singing, however, such pitch 
contour can be overridden by the melody of the music, 
making the lyrics difficult to decode by listeners [1]. In 
order for lyrics to be more intelligible, Beijing opera’s 
melody is traditionally arranged with considerations of 
lyrics tone information. The degree and manner of this 
incorporation, however, is only partly known through 
scholarly work [1-4]. The difficulty of this problem is 
further complicated by the fact that there are two dialects 
with distinct tone contours within Beijing opera (Beijing 
and HuGuang dialects, or BJ and HG in this paper) [3].  

Previous works cited above indicate that the similar-
ity between linguistic tones and melodic pitch contours in 
Beijing Opera can be captured either by the contour shape 
of single syllable units, or by the pairwise pitch height 

relations in adjacent syllable units. [1] considered the sin-
gle-syllable unit contour analysis with a time-series data 
mining approach. This study concluded that while the 
Smoothing Spline model’s R-squared values are consis-
tent with the expected variance relations between the first 
tone and other tones, overall there exists a large amount 
of un-explained variance in melodic contours that cannot 
be attributed to grouping of tone categories from a single 
tone system (BJ or HG).  

In this paper we investigate the second type of simi-
larity of linguistic tones and melodic contours. Following 
musical literature [12], we postulate that the perceived 
similarity of the melody to a tone category is realized by 
the similar pitch height relations in a pair of adjacent syl-
lable units in singing (to that of the tone in speech). We 
then formulate this problem as a supervised machine 
learning problem of predicting the type of pairwise pitch 
height relations based on features derived from linguistic 
attributes. First we perform experimentation on the most 
efficient and cognitively accurate time-series representa-
tions for pitch contour vectors and extract the class labels. 
Following feature extraction and data preprocessing, a 
series of multinomial, binary and mixed effects regres-
sion models are trained. These allow us to progressively 
achieve our two main goals:  First, using linguistic infor-
mation to predict (with improved accuracy) the melodic 
pairwise pitch height relations; second, as a consequence, 
we also obtain a better understanding of the effect of 
various linguistic and other attributes on the types of 
pitch height relations observed in Beijing opera.  

The remainder of the paper is organized as follows. 
Section 2 gives the formulation of the pairwise tone-
melody similarity as a supervised machine learning prob-
lem, followed by the description of data collection and 
preprocessing in Section 3. The core methodologies of 
time-series data representation experimentation and 
model training are described in Section 4. Section 5 and 6 
discuss the results, including the comparison of models 
and interpretation of model parameters.   
 

2. PROBLEM FORMULATION  

Recent research revealed that tone identification by hu-
mans does not necessarily depend on the availability of 
full tone contour information [5]. In the light of this find-
ing, pairwise tone-melody similarity is therefore a cogni-
tively plausible way for the melody to convey underlying 
tone information without being fully similar to the con-
tour of the linguistic tone. For example, a high-level tone 
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(5-5)1 followed by a low-rise tone (2-4) can be reflected 
in melody as long as the perceived starting pitch of the 
second syllable is lower than the first. Perceptually, the 
beginning position of a syllable is the most salient, being 
a prominent position that carries much phonetic informa-
tion such as formant transitions [6].  Alternatively, one 
may propose that this relation can be reflected by the end-
ing pitch of the first syllable and the beginning pitch of 
the second syllable, being the closest pair in time. Less 
plausible is the case where this similarity is reflected in 
the ending region pitch of both syllables.  

We therefore formulate this problem of pairwise 
similarity as a supervised machine learning problem. 
First, we define three types of relations between the two 
syllables in proximity (mostly adjacent, but can be sepa-
rated by a short instrumental interlude), based on the rela-
tive pitch height: ascending (A), descending (D), and 
level (L). These are our target class labels. Second, we 
define three subtypes of pairwise similarity based on the 
location of the similarity: Onset-Onset (BB), Offset-
Onset (EB), and Offset-Offset (EE). We will train a sepa-
rate model for each type of similarity. Third, we formu-
late the research objective: given linguistic tone and other 
attributes of a pair of syllables in the lyrics, can we cor-
rectly predict the type of relations of relative pitch height 
in vocal melody (A, D, or L as class label)? 

  

3. DATA COLLECTION 

3.1 Data Collection 

The current study uses about 1300 syllable-sized con-
tours extracted from a selection of 20 arias in a pre-
segmented and annotated Beijing opera audio collection 
corpus [7]. Each syllable in this data set is annotated 
with linguistic tone, word, artist, role type, melodic type 
(shengqiang), rhythmic type (banshi), and relevant 
metadata information. This set is selected according to a 
number of criteria: (1) we selected only yuanban, a 
rhythmic type in which the duration of a syllable sized 
unit bears the most similarity to that of speech; (2) we 
selected both types of shengqiang, namely xipi and er-
huang; (3) we selected five role types: D(dan), J(jing), 
LD(laodan), LS(laosheng), and XS(xiaosheng). For each 
combination of shengqiang and role types, we selected 
two arias, yielding a total of 20 arias for analysis. This 
set of arias is selected by a music scholar with expertise 
in Beijing opera music (who is the second author), and is 
therefore a representative set that is both comprehensive 
and selective for the task of studying the tone-melody 
relationship. 

3.2 Pitch Contour Extraction 

The fundamental frequency of vocal melodic con-
tours is computed using the MELODIA [10] package 

                                                 
1 The numbering here follows the relative pitch height from low to high: 
1<2<3<4<5. 

within the Essentia audio signal-processing library in Py-
thon [11], in order to minimize the interference of back-
ground instrumental ensemble to the computation of F0 
of the primary vocal signal. All rows of F0 values asso-
ciated with a specific pitch contour are automatically as-
signed a unique pitch contour id that encodes the aria, 
tone, and temporal order information of the syllable. For 
the sake of analysis, we produce down-sampled 30-point 
F0 vectors by using equidistant sampling across each 
pitch contour. A 5-point weighted averaging sliding win-
dow is applied to smooth the signal. The single-syllable 
contour data is then converted into a pairwise-syllable 
contour data file where each row has 60 pitch points of 
the two adjacent syllable contours, plus other attributes. 

 

4. METHODOLOGY 

4.1 Time-series representation 
First we perform automatic extraction of our target class 
labels (A, D, or L). In order to capture the accurate per-
ceived pitch heights in the beginning and ending regions 
of each syllable-sized melodic contour, we first convert 
the 30-point pitch contour into a lower dimension repre-
sentation using the Symbolic Aggregate approXimation 
(SAX) [8]. SAX transforms the pitch contour into a sym-
bolic representation using Piecewise Aggregate Ap-
proximation with a user-designated length (nseg, or 
sometimes referred to as word size, is the desired length 
of the feature vector) and alphabet size (alpha), the latter 
being used to divide the pitch space of the contour into 
alpha parts assuming a Gaussian distribution of F0 values.  

Using this technique, we experiment with the pa-
rameter settings of SAX with the goal of yielding the 
most similar relation types as a human listener would 
judge it. To perform this experiment, we first have a hu-
man listener annotate a selection of 260 sample tone con-
tours extracted from our audio collection2. For each con-
tour, the listener would rate the type of pairwise relation 
(A, D or L) by listening through the contour pairs. The 
experiment is proctored automatically by a Praat Script 
program and the presentation of each pair is separated by 
a white noise of 5 seconds. The listener rates all 260 con-
tours consecutively.  

Next, we permute the single syllable contour unit pa-
rameter values3 within intervals nseg ([3,8]) and alpha 
([3,6]). Each combination of the parameters yields a SAX 
representation for all contours and then three pairwise 
relation types (BB, EB, EE) based on the representation is 
extracted. We then compute the similarity / accuracy of 
each representation to the human judgments. Here, it is 
                                                 
2 Human rater is used only to train the parameters on a smaller sample 
so that we can perform automatic label extraction on larger scales of 
data. 
3 To ensure the consistency of pitch space division with the Gaussian 
breakpoints, we convert a pair of syllables at a time, making the nseg 
parameter twice as big. 
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noteworthy that the perceived beginning pitch height of a 
syllable-sized melodic contour does not necessarily cor-
respond to a predetermined meaningful musical unit such 
as a note. This is due to the nature of the Beijing opera 
that has many fine melisma across the melody.  In this 
case, we do not attempt to define a perceptually or musi-
cally grounded unit of ‘beginning pitch’, but rather we 
will let the experiment results decide which parameter 
configuration would be the closest to the human judg-
ment. Since SAX is already a dimensionality reduction 
algorithm, we thereby define the beginning pitch of a syl-
lable as the first symbol in the symbolic time-series rep-
resentation. After the parameters are chosen, we use the 
SAX representations to extract pairwise relation types for 
the entire training set. 
 

 
4.2 Regression modeling 

4.2.1 Feature Extraction and Data Preprocessing 
The basic set of features includes the attributes extracted 
from the corpus annotations: ToneFirst, ToneSecond, (of 
the first and second syllable in a pairwise contour),word, 
artist, role_type, shengqiang, banshi, as well as the dura-
tion of both syllables. All except the last one are nominal 
attributes. 

We additionally extracted three sets of compound 
features based on linguistic tones: first, a toneCombina-
tion feature that encodes the particular tone combinations 
(e.g., tone1_tone2) of this pairwise contour; second, six 
other features that encodes the types of linguistic tone 
pitch height relations of this tone combination (BB, EB, 
and EE) as well as the two dialectal tone systems (BJ and 
HG). These features are therefore (BB_BJ, BB_HG,  
EB_BJ, EB_HG, EE_BJ, EE_HG). These are the only 
features that directly encode the types of pairwise linguis-
tic tone relations into the feature vectors, using numbered 
pitch height system from linguistic literature (e.g., tone 3 
in BJ is 214 and in HG is 42, 1<2<3<4). Theoretically 
these features should not be used all at once, since each 
one of our regression models would only account for one 
type of output relations (BB, EB, or EE). However, since 
the previous studies suggest that the BJ and HG tone sys-
tems are likely intermixed in affecting the output melodic 
contour[1], we include both of these two types of features 

in each model. A third feature encodes the temporal dis-
tance/ number of interval segments between the pair of 
syllable: it is hypothesized that a closer pair of syllable 
would contribute to the manifestation of linguistic infor-
mation. We have eliminated those pairs whose distance is 
greater than 10 intervals (the intervals in between a pair 
could be due to various reasons, but mostly likely instru-
mental interlude). Figure 1 shows the distribution of dis-
tance in units of time intervals in the entire data set 
(where an interval is a syllable unit in our data segmenta-
tion). From this distribution we can see that most pairs 
are sung consecutively. 
 

 
 
We perform several measures of data preprocessing 

on the training data. First, we eliminate all contours 
whose syllable duration is longer than a threshold of 
5s(based on the distribution of durations). This is based 
on the observation that if the syllable is too long, the 
temporal relations are sparser and it has more chance to 
musically embellish its contours, further obscuring the 
linguistic information. Second, we observe that there is 
an extreme imbalance between tone categories 1-4 and 
tone 5. Linguistically, tone 5 is a ‘neutral’ tone that car-
ries different contours according to their context. Figure 2 
shows this imbalance in the toneCombination feature. We 
eliminated all examples with tone 5 in order to avoid sin-
gularity problems with generalized linear modeling.  

Lastly, the output class label distribution is also 
highly skewed (Figure 3). This is an interesting property 
of this musical data set especially when compared with its 
expected counterpart in language (i.e., the set of six tone 
features that encodes pairwise tone pitch relations).  Fig-
ure 3 plots the set of pairwise musical pitch relation la-
bels (BB, EB, EE) alongside its expected counter part 
(BB_BJ, EB_BJ, etc.) linguistic tone feature distribu-
tions. It is noteworthy that not coincidentally, the linguis-
tic pairwise types have a quite uniform distribution 
whereas the musical pairwise types have a very skewed 
distribution, with the “L(evel)” label being the rare class. 
This is probably a product of music: music, being a play 
largely about the manipulation of pitch, is intentionally 
avoiding many of the adjacent syllables (or notes) starting 
or ending with the same pitch height. Therefore in these 
cases we may hypothesize that the music is overriding 
linguistic configurations, thus obscuring our model. For 
this reason as well as motivations from the machine 
learning perspective, we created a second data set where 
all “L” labels are removed from the training data (which 
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is a small portion, ref. Figure 3). Therefore we use this 
second data set for binary logistic and mixed-effects re-
gression modeling in the latter part of the study. 

4.2.2 Multinomial Regression 

Our first model approximates this problem with a multi-
nomial logistic regression using the original data set with 
three output class labels (A, D, L). The multinomial lo-
gistic regression is an extension to the binary logistic re-
gression modelling, where we train one-versus-other 
models for each of the class labels. The model outputs the 
probability of assigning each label and selects the label 
with the highest probability as the predicted label.  

For all of the algorithms used in this study, as previ-
ously discussed, we build three models assuming three 
different types of relations (BB, EB, EE). We first build 
baseline multinomial logistic regression models with all 
available basic features. Then we incrementally drop fea-
tures whose coefficients are insignificant and having low 
predicting powers and end up with the best model for this 
setting. This set of features is used throughout the rest of 
the models in conjunction with compound features. 

4.2.3 Binary (Fixed Effects) Logistic Regression 

We then perform all subsequent regression modeling on 
the binary data set. As a baseline for this data set, we per-
form classic fixed effects binary logistic regression and 
compare the result with a number of well known machine 
learning algorithms such as Support Vector Machine 
(SVM), decision tress (J48 in Weka), Neural Networks, 
and Naïve Bayes. 

 

 
 

 

4.2.4 Mixed Effects Logistic Regression 

A mixed-effects regression model performs prediction by 
combining the contributions from fixed effects and ran-
dom effects. Parameters associated (coefficients) with the 
particular levels of a covariate are known as the “effects” 
of the levels. Essentially, if the set of possible levels of 
the covariate is fixed and reproducible we model the co-
variate using fixed-effects parameters. If the levels that 
we observed represent a random sample from the set of 
all possible levels we incorporate random effects in the 
model [9]. 

We extend from generalized linear models (GLMs) 
to multilevel GLMs by adding a stochastic component Z 
to the linear predictor (see (1)), where the random effects 
vector b is normally distributed with mean 0 and vari-
ance-covariance matrix Σ. In a mixed-effects logistic re-
gression model, we plug the stochastic linear predictor 
into the binomial (logistic) linking function. 

η=α+β1X1 +…+βnXn +b0 +b1Z1 +…+bmZm+ε (1)  

 
In the current setting, the random effects of our fea-

ture correspond to the variable words. Any general model 
would usually exclude the particular words of the two 
syllables as a fixed-effect feature; however, the problem 
with the fixed effects model (like the one described 
above) is that it is not capturing the variances in the out-
put label caused by being different words. The mixed ef-
fects model corrects this by estimating the conditional 
mode of the random effect term coefficients B. Strictly 
speaking, we don’t estimate the random effects in the 
same sense that we estimate model parameters. Instead, 
we consider the conditional distribution of B given the 
observed data, (B|Y =y), where Y is the output class label 
[9]. 

All modeling in this study are done with 10-fold 
cross validation in the training phase. 
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5. RESULT  

5.1 Time-series Representation Experiment Results 

Overall the time-series representation experiments using 
SAX technique yielded informative results. First, as 
shown in Figure 4, the differences in the accuracy are 
mostly the effect of varying nseg, whereas the effect of 
alpha parameter is not apparent (except for the EE type).  
Second, somewhat surprisingly, the average type predic-
tion accuracy vary significantly across the three types: 
BB>>EB>EE, with Onset-to-Onset relation types per-
forming almost perfectly at peak accuracy of 93%. This 
contrast is surprising considering that the human listener 
(who is a skilled musician) did not rate these three types 
directly; instead, the listener only had to rate the begin-
ning and end of a single syllable on a numbered fixed 
scale1 and the values for the three types of relations were 
extracted using that reference scale automatically. This 
systematic difference in the accuracy of these three types 
of relations indicates that the Offset annotation / judg-
ment has a much lower correlation with the acoustic sig-
nal than the Onset annotation. One possible explanation 
for this could be that the ending of a syllable is embel-
lished with more melismas than the beginning portion of 
the syllable, making the correlation lower. However, that 
would not predict the systematic lower performance of 
SAX EB and EE, which is at a lower resolution than the 
original acoustic signal. An alternative explanation is that 
the offset position is not as salient as the onset position, 
making it less appropriate for the location of carrying lin-
guistic tone information.  

Due to the differences in performance, we choose the 
SAX parameter settings for each of the three types: 
{BB:6_7, EB: 4_3, BB: 6_3}, where the parameter com-
binations stand for alpha_nseg. 

 

5.2 Regression Modeling Results2 
 Coef1(D) p-value Coef2 (L) p-value 

Intercept(A) -0.0761 6e-01 -1.2447 *2e-05 
Duration1 0.2149 0.0437 0.2594 0.1048 

T_1_2 -0.8454 *6e-06 -0.8159 *7e-03 
T_1_3 -0.6952 *0.0004 -0.4844 0.1148 
T_1_4 -1.2471 *6e-12 -0.9295 *1e-03 
T_2_2 0.5765 *0.0018 -0.1137 0.6986 
T_2_3 0.6709 *0.0007 0.2909 0.3265 
T_2_4 1.1505 *2e-10 0.2175 4e-01 

Table 1. Significant (basic) predictors overview from multino-
mial regression for BB type, with asterisks indicating coeffici-
ents significant at 0.05 level. Coef1 and coef2 represent the re-
gression coefficient associated with features. T_i_j is the co-
efficient associated with a i-th tone being a tone j. 

                                                 
1 Here, all the contours are extracted sequentially from the same aria so 
the judgment and extraction of consecutive relations are accurate. 
2 In this table, class A is treated as base/default level, and the Intercepts 
represent the base probabilities of D and L with regard to A without any 
knowledge about features.  

First, results (Table 1) of multinomial logistic regression 
reveal that tone information and the duration of the first 
syllable are among the most significant predictors of the 
probability of a pairwise contour being one of the three 
output classes (A, D or L). Concretely, for example, be-
ing a Tone 2 in the first syllable would significantly 
lower the probability of being a “D” by log-odds -0.8454 
or odds exp(-0.8434), and being a tone 4 for the second 
syllable would significantly increase the probability of 
being a “L” by log-odds 0.2175 or odds of exp(0.2175), 
where the exp() is the exponentiation function. Overall 
the multinomial regression has a mean classification ac-
curacy of 56.7% for all types of models on the 10-fold 
cross validation on the entire data set. This is a lower 
baseline for the subsequent models. Due to the skewed 
output distribution of class labels, the model consistently 
assigns the lowest probability to “L” in all predictions. 

Despite this finding, further analysis shows that the 
basic tone features (ToneFirst and ToneSecond) have lim-
ited predictive power compared to other compound tone 
features. Therefore in the subsequent analysis we drop 
these two basic features and keep the other 1+6 types of 
compound features.     

Our binary logistic model on the binary class data set 
(class label A and D) improves the accuracy by about 9%. 
This result is comparable across different classification 
algorithms (Table 2).  

 
Algorithm mean Accuracy 
Binary Logistic Regression 65.12% 
Decision Tree (J48) 61.57% 
SVM 62.44% 
NaiveBayes 61.56% 
NeuralNetwork 60.07% 

Table 2. Average performance of different algorithms on the 
binary classification data set with a 10-fold cross validation 

The mixed-effect model further improves the predic-
tion accuracy to around and above 70%. This set of mod-
els has two variations. The first set is built with 
ToneCombination and the six other compound features 
(two per model) as well as the duration of the first and 
second syllable as fixed effects features, and the Word as 
a simple scalar random effect feature (1|Word). The sec-
ond set includes more complex random effects features 
(1+duration1|Word), which takes into account the interac-
tion between the duration of the first syllable (fixed ef-
fect) and the Word (random effect) feature. The perform-
ance of these two sets varies between the three types of 
models. Table 3 gives a comprehensive overview of the 
evaluation of the models. 

Overall, all models have shown that the prediction 
accuracy decreases from BB to EB to EE. This is in ac-
cordance with our initial SAX representation accuracy 
rank, therefore is expected. However, the underlying rea-
son for this is unclear, as discussed previously.  
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Figure 5 gives an overview of the model perform-
ances based on average accuracy. 

 
 AIC BIC LogLik Sc.Residual Accuracy 
BB1 1059.3 1153.1 -509.7 -0.438 70.77% 
BB2 1063.1 1166.3 -509.5 -0.437 69.99% 
EB1 1086.8 1180.6 -523.4 0.526 65.30% 
EB2 1096.4 1193.6 -523.2 0.512 65.8% 
EE1 1104.3 1198.1 -532.2 0.685 60.95% 
EE2 1107.2 1210.4 -531.6 0.649 64.80% 

Table 3 Model comparison for mixed effect models, where AIC 
and BIC are commonly used Akaike Information Criterion and 
Bayesian Information Criterion 

6. DISCUSSION AND CONCLUTION 

The current study has considered the problem of the simi-
larity between linguistic tones and melodic contours in 
Beijing opera in the form of pairwise pitch height rela-
tions. We formulate this similarity problem as a super-
vised machine learning problem of predicting the type of 
relations based on linguistic tone information. We have 
shown that using a set of linguistic features alone (tone 
and duration information), the model is able to achieve 
the best average accuracy of around 65% to 71% based 
on the types of hypothesized relations, after we have re-
duced the output class labels to binary (for reasons dis-
cussed above). Here we discuss several aspects of the in-
terpretation and evaluation of the current results. 

 First, the performance of the models has shown con-
sistently that Onset-Onset is a more robust pairwise rela-
tion type compared to Offset-Onset and Offset-Offset. 
However, this result may be dependent upon the initial 
performance rank of SAX representation accuracy for 
these three types. To better understand this phenomenon, 
we performed a post-hoc re-analysis of the SAX conver-
sion using the original fundamental frequency data with-
out down-sampling and evaluate its accuracy.  The result 
showed a more balanced yet overall lower accuracy on 
extracted class labels as compared to human annotation 
(75%, 72%, and 78% peak accuracy values for BB, EB, 
and EE). When using this set of class labels, we obtained 
generally lower performance on the best mixed effects 
models in the classification task (57%, 68%, and 58% for 
BB, EB, and EE). Noticeably, the BB type model has a 
lower prediction accuracy than the EB type, making the 
Offset-to-onset relation more robust. Meanwhile, there is 
less confidence in this result due to the general lower ac-
curacy in the representation of the class labels.  

Second, we should also bear in mind that in the cur-
rent problem, the class labels of pitch height relations are 
dependent upon the musical considerations on top of the 
linguistic considerations. For all practical and theoretical 
reasons we believe that Beijing opera music has its own 
rules that at many times take precedence over linguistic 
rules, and that should give us a large proportion of unex-
plained variances when predicting pairwise pitch rela-
tions. Considering this factor, it is fair to conclude that 
the current models have shown effectively the high de-
gree of pairwise similarity between linguistic tones and 

melodic contours in Beijing opera. For the same reason 
discussed above, we have justified our decision to take 
the “L” class out from our model because of its likely ir-
relevance to linguistic information (and should be ex-
plained by musical considerations). 

Third, comparing the current study with previous 
works on the single-syllable contour similarity [1], we 
observe that the current approach yields higher explana-
tory power than the previous approach, while requiring 
significantly less computing resources. 1 Specifically, it is 
worth noting that while the contour-shape-based 
SSANOVA models in [1] suffers from the lack of knowl-
edge on the exact weights of the two dialects (BJ and 
HG), the current approach is able to encode expected 
pairwise pitch relations from both dialects into the fea-
tures, thus making it more effective in a supervised learn-
ing task. 
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