
COVER SONG IDENTIFICATION WITH TIMBRAL SHAPE SEQUENCES

Christopher J. Tralie
Duke University Department of

Electrical and Computer Engineering
chris.tralie@gmail.com

Paul Bendich
Duke University Department of

Mathematics
bendich@math.duke.edu

ABSTRACT

We introduce a novel low level feature for identifying cover
songs which quantifies the relative changes in the smoothed
frequency spectrum of a song. Our key insight is that a
sliding window representation of a chunk of audio can be
viewed as a time-ordered point cloud in high dimensions.
For corresponding chunks of audio between different ver-
sions of the same song, these point clouds are approxi-
mately rotated, translated, and scaled copies of each other.
If we treat MFCC embeddings as point clouds and cast
the problem as a relative shape sequence, we are able to
correctly identify 42/80 cover songs in the “Covers 80”
dataset. By contrast, all other work to date on cover songs
exclusively relies on matching note sequences from Chroma
derived features.

1. INTRODUCTION

Automatic cover song identification is a surprisingly diffi-
cult classical problem that has long been of interest to the
music information retrieval community [5]. This problem
is significantly more challenging than traditional audio fin-
gerprinting because a combination of tempo changes, mu-
sical key transpositions, embellishments in time and ex-
pression, and changes in vocals and instrumentation can
all occur simultaneously between the original version of a
song and its cover. Hence, low level features used in this
task need to be robust to all of these phenomena, ruling out
raw forms of popular features such as MFCC, CQT, and
Chroma.

One prior approach, as reviewed in Section 2, is to com-
pare beat-synchronous sequences of chroma vectors be-
tween candidate covers. The beat-syncing helps this be
invariant to tempo, but it is still not invariant to key. How-
ever, many schemes have been proposed to deal with this,
up to and including a brute force check over all key trans-
positions.

Chroma representations factor out some timbral infor-
mation by folding together all octaves, which is sensible
given the effect that different instruments and recording en-
vironments have on timbre. However, valuable non-pitch

c
� Christopher J. Tralie, Paul Bendich.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Christopher J. Tralie, Paul Bendich.
“Cover Song Identification with Timbral Shape Sequences”, 16th Inter-
national Society for Music Information Retrieval Conference, 2015.

information which is preserved between cover versions,
such as spectral fingerprints from drum patterns, is ob-
scured in Chroma representation. This motivated us to take
another look at whether timbral-based features could be
used at all for this problem. Our idea is that even if ab-
solute timbral information is vastly different between two
versions of the same song, the relative evolution of timbre
over time should be comparable.

With careful centering and normalization within small
windows to combat differences in global timbral drift be-
tween the two songs, we are indeed able to design shape
features which are approximately invariant to cover. These
features, which are based on self-similarity matrices of
MFCC coefficients, can be used on their own to effectively
score cover songs. This, in turn, demonstrates that even if
absolute pitch is obscured and blurred, cover song identifi-
cation is still possible.

Section 2 reviews prior work in cover song identifica-
tion. Our method is described in detail by Sections 3 and
4. Finally, we report results on the “Covers 80” benchmark
dataset [7] in Section 5, and we apply our algorithm to the
recent “Blurred Lines” copyright controversy.

2. PRIOR WORK

To the best of our knowledge, all prior low level feature de-
sign for cover song identification has focused on Chroma-
based representations alone. The cover songs problem
statement began with the work of [5], which used FFT-
based cross-correlation of all key transpositions of beat-
synchronous chroma between two songs. A follow-up
work [8] showed that high passing such cross-correlation
can lead to better results. In general, however, cross-
correlation is not robust to changes in timing, and it is
also a global alignment technique. Serra [22] extended this
initial work by considering dynamic programming local
alignment of chroma sequences, with follow-up work and
rigorous parameter testing and an “optimal key transposi-
tion index” estimation presented in [23]. The same authors
also showed that a delay embedding of statistics spanning
multiple beats before local alignment improves classifica-
tion accuracy [25]. In a different approach, [14] compared
modeled covariance statistics of all chroma bins, as well
as comparing covariance statistics for all pairwise differ-
ences of beat-level chroma features, which is not unlike the
“bag of words” and bigram representations, respectively,
in text analysis. Other work tried to model sequences of

38

chords [2] as a slightly higher level feature than chroma.
Slightly later work concentrated on fusing the results of
music separated into melody and accompaniment [11] and
melody, bass line, and harmony [21], showing improve-
ments over matching chroma on the raw audio. The most
recent work on cover song identification has focused on
fast techniques for large scale pitch-based cover song iden-
tification, using a sparse set of approximate nearest neigh-
bors [28] and low dimensional projections [12]. Authors
in [9] and [17] also use the magnitude of the 2D Fourier
Transform of a sequences of chroma vectors treated as an
image, so the resulting coefficients will be automatically
invariant to key and time shifting without any extra com-
putation, at the cost of some discriminative power.

Outside of cover song identification, there are other
works which examine gappy sequences of MFCC in mu-
sic, such as [4]. However, these works look at matched
sequences of MFCC-like features in their original feature
space. By contrast, in our work, we examine the rela-
tive shape of such features. Finally, we are not the first
to consider shape in an applied musical context. For in-
stance, [29] turns sequences of notes in sheet music into
plane curves, whose curvature is then examined. To our
knowledge, however, we are the first to explicitly model
shape in musical audio for version identification.

3. TIME ORDERED POINT CLOUDS FROM
BLOCKS OF AUDIO

The first step of our algorithm uses a timbre-based method
to turn a block of audio into what we call a time-ordered
point cloud. We can then compare to other time-ordered
point clouds in a rotation, translation, and scale invariant
manner using normalized Euclidean Self-Similarity matri-
ces (Section 3.3). The goal is to then match up the relative
shape of musical trajectories between cover versions.

3.1 Point Clouds from Blocks and Windows

We start with a song, which is a function of time f(t) that
has been discretized as some vector X . In the following
discussion, the symbol X(a, b) means the song portion be-
ginning at time t = a and ending at time t = b. Given
X , there are many ways to summarize a chunk of audio
w 2 X , which we call a window, as a point in some feature
space. We use the classical Mel-Frequency Cepstral coef-
ficient representation [3], which is based on a perceptually
motivated log frequency and log power short-time Fourier
transform that preserves timbral information. In our appli-
cation, we perform an MFCC with 20 coefficients, giving
rise to a 20-dimensional point.

MFCC(w) 2 R20 (1)

Given a longer chunk of audio, which we call a block,
we can use the above embedding on a collection of K
windows that cover the block to construct a collection of
points, or a point cloud, representing that block. More for-
mally, given a block covering a range [t1, t2], we want a set
of window intervals [ai, bi], with i = 1..K, so that

• ai < bi

• ai < ai+1, bi < bi+1

• [K
i=1[ai, bi] = [t1, t2]

Where t1, t2, ai, and bi are all discrete time indices into
the sampled audio X . Hence, our final operator takes a set
of time-ordered intervals {[a1, b1], [a2, b2], ..., [aK , bK]}
which cover a block [t1, t2] and turns them into a K-
dimensional point cloud in R20

PC({[a1, b1], ..., [aK , bK]}) =

{MFCC(X(a1, b1)), ..., MFCC(X(aK , bK))} (2)

3.2 Beat-Synchronous Blocks

As many others in the MIR community have done, includ-
ing [5] and [8] for the cover songs application, we com-
pute our features synchronized within beat intervals. We
use a simple dynamic programming beat tracker developed
in [6]. Similarly to [8], we bias the beat tracker with three
initial tempo levels: 60BPM, 120BPM, and 180BPM, and
we compare the embeddings from all three levels against
each other when comparing two songs, taking the best
score out of the 9 combinations. This is to mitigate the ten-
dency of the beat tracker to double or halve the true beat
intervals of different versions of the same song when there
are tempo changes between the two. The trade-off is of
course additional computation. We should note that other
cover song works, such as [23], avoid beat tracking step
altogether, hence bypassing these problems. However, it is
important for us to align our sequences as well as possible
in time so that shape features are in correspondence, and
this is a straightforward way to do so.

Given a set of beat intervals, the union of which makes
up the entire song, we take blocks to be all contiguous
groups of B beat intervals. In other words, we create a
sequence of overlapping blocks X1, X2, ... such that Xi is
made up of B time-contiguous beat intervals, and Xi and
Xi+1 differ only by the starting beat of Xi and the fin-
ishing beat of Xi+1. Hence, given N beat intervals, there
are N � B + 1 blocks total. Note that computing an em-
bedding over more than one beat is similar in spirit to the
chroma delay embedding approach in [25]. Intuitively, ex-
amining patterns over a group of beats gives more informa-
tion than one beat alone, the effect of which is empirically
evaluated in Section 5. For all blocks, we take the win-
dow size W to be the length of the average tempo period,
and we advance the window intervals evenly from the be-
ginning of the block to the end of a block with a hop size
H = W/200. Hence, there is a 99.5% overlap between
windows. We were inspired by theory on raw 1D time
series signals [18], which shows that matching the win-
dow length to be just under the length of the period in a
delay embedding maximizes the roundness of the embed-
ding. Here we would like to match beat-level periodicities
and fluctuations therein, so it is sensible to choose a win-
dow size corresponding to the tempo. This is in contrast
to most other applications that use MFCC sliding window
embeddings, which use a much smaller window size on the

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 39

(a) Window size 0.05 seconds (b) Window size 0.5 seconds

Figure 1. A screenshot from our GUI showing PCA on
the sliding window representation of an 8-beat block from
the hook of Robert Palmer’s “Addicted To Love” with two
different window sizes. Cool colors indicate windows to-
wards the beginning of the block, and hot colors indicate
windows towards the end.

order of 10s of milliseconds, generally with a 50% overlap,
to ensure that the frequency statistics are stationary in each
window. In our application, however, we have found that
a longer window size makes our self similarity matrices
(Section 3.3) smoother, allowing for more reliable matches
of beat-level musical trajectories, while having more win-
dows per beat (high overlap) leads to more robust matching
of SSMs using L2 (Section 4.1).

Figure 1 shows the first three principal components of
an MFCC embedding with a traditional small window size
versus our longer window embedding to show the smooth-
ing effect.
3.3 Euclidean Self-Similarity Matrices

For each beat-synchronous block Xl spanning B beats,
we have a 20-dimensional point cloud extracted from the
sliding window MFCC representation. Given such a time-
ordered point cloud, there is a natural way to create an im-
age which represents the shape of this point cloud in a rota-
tion and translation invariant way, called the self-similarity
matrix (SSM) representation.
Definition 1. A Euclidean Self-Similarity Matrix (SSM)
over an ordered point cloud Xl 2 RM⇥k is an M ⇥ M
matrix D so that

Dij = ||Xl[i] � Xl[j]||2 (3)

In other words, an SMM is an image representing all
pairwise distances between points in a point cloud ordered
by time. SSMs have been used extensively in the MIR
community already, spearheaded by the work of Foote in
2000 for note segmentation in time [10]. They are now
often used in general segmentation tasks [24] [15]. They
have also been successfully applied in other communities,
such as computer vision to recognize activity classes in
videos from different points of view and by different ac-
tors [13]. Inspired by this work, we use self-similarity ma-
trices as isometry invariant descriptors of local shape in
our sliding windows of beat blocks, with the goal of cap-
turing relative shape. In our case, the “activities” are mu-
sical expressions over small intervals, and the “actors” are
different performers or groups of instruments.

The Beatles Five Man Acoustical Jam

Ti
m
e

Ti
m
e

Time Time

(a) A block of 4 beats with 400 windows sliding in the song “We Can Work
It Out” by The Beatles with a cover by Five Man Acoustical Jam

Neil Young Annie Lennox

Ti
m
e

Time Time

Ti
m
e

(b) A block of 4 beats with 400 windows sliding in the song “Don’t Let It
Bring You Down” by Neil Young with a cover by Annie Lennox.

Figure 2. Two examples of MFCC SSM blocks which
were matched between a song and its cover in the cov-
ers80 dataset. Hot colors indicate windows in the block
are far from each other, and cool colors indicate that they
are close.

To help normalize for loudness and other changes in re-
lationships between instruments, we first center the point
cloud within each block on its mean and scale each point
to have unit norm before computing the SSM. That is, we
compute the SSM on X̂ l, where

X̂l =

⇢

x � mean(x)

||x � mean(x)||2 : x 2 Xl

�

(4)

Also, not every beat block has the same number of sam-
ples due to natural variations of tempo in real songs. Thus,
to allow comparisons between all blocks, we resize each
SSM to a common image dimension d ⇥ d, which is a pa-
rameter chosen in advance, the effects of which are ex-
plored empirically in Section 5.

Figure 2 shows examples of SSMs of 4-beat blocks
pulled from the Covers80 dataset that our algorithm
matches between two different versions of the same song.
Visually, similarities in the matched regions are evident. In
particular, viewing the images as height functions, many
of the critical points are close to each other. The “We Can
Work It Out” example shows how this can work even for
live performances, where the overall acoustics are quite
different. Even more strikingly, the “Don’t Let It Bring
You Down” example shows how similar shape patterns
emerge even with an opposite gender singer and radically
different instrumentation. Of course, in both examples,

40 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

