
A SOFTWARE FRAMEWORK FOR MUSICAL DATA AUGMENTATION

Brian McFee1,2,*, Eric J. Humphrey2,3, and Juan P. Bello2

1Center for Data Science, New York University
2Music and Audio Research Laboratory, New York University

3MuseAmi, Inc.

ABSTRACT

Predictive models for music annotation tasks are practi-
cally limited by a paucity of well-annotated training data.
In the broader context of large-scale machine learning, the
concept of “data augmentation” — supplementing a train-
ing set with carefully perturbed samples — has emerged as
an important component of robust systems. In this work,
we develop a general software framework for augmenting
annotated musical datasets, which will allow practitioners
to easily expand training sets with musically motivated per-
turbations of both audio and annotations. As a proof of
concept, we investigate the effects of data augmentation
on the task of recognizing instruments in mixed signals.

1. INTRODUCTION

Musical audio signals contain a wealth of rich, complex,
and highly structured information. The primary goal of
content-based music information retrieval (MIR) is to ana-
lyze, extract, and summarize music recordings in a human-
friendly format, such as semantic tags, chord and melody
annotations, or structural boundary estimations. Model-
ing the vast complexity of musical audio seems to require
large, flexible models with many parameters. By the same
token, parameter estimation in large models often requires
a large number of samples: big models require big data.

Within the past few years, this phenomenon of increas-
ing model complexity has been observed in the computer
vision literature. Currently, the best-performing models for
recognition of objects in images exploit two fundamental
properties to overcome the difficulty of fitting large, com-
plex models: access to large quantities of annotated data,
and label-invariant data transformations [14]. The benefits
of large training collections are obvious, but unfortunately
difficult to achieve for most musical annotation tasks due
to the complexity of the label space and need for expert
annotators. However, the idea of generating perturbations
of a training set — known as data augmentation — can be
readily adapted to musical tasks.

⇤Please direct correspondence to brian.mcfee@nyu.edu

c
� Brian McFee, Eric J. Humphrey, Juan P. Bello.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Brian McFee, Eric J. Humphrey, Juan
P. Bello. “A software framework for musical data augmentation”, 16th
International Society for Music Information Retrieval Conference, 2015.

Conceptually, data augmentation consists of the appli-
cation of one or more deformations to a collection of (an-
notated) training samples. Data augmentation is motivated
by the observation that a learning algorithm may general-
ize better if it is trained on instances which have been per-
turbed in ways which are irrelevant to their labels. Some
concrete examples of deformations drawn from computer
vision include translation, rotation, reflection, and scaling.
These simple operations are appealing because they typi-
cally do not affect the target class label: an image of a cat
still contains a cat, even when it is flipped upside-down.

More generally, deformations apply not only to observ-
able features, but the labels as well. Continuing with the
image example, if an image is rotated, then any pixel-wise
label annotations (e.g., bounding boxes) should be rotated
accordingly. This observation opens up several interesting
possibilities for musical applications, in which the target
concept space typically exhibits a high degree of structure.
A musical analog to the image rotation example would be
time-stretching, where time-keyed annotation boundaries
(e.g., chord labels or instrument activations) must be ad-
justed to fit the stretched signal [16].

Many natural, musically-inspired deformations would
not only change the position of annotations, but the val-
ues themselves. For instance, if a time-stretched track has
tempo annotations, the annotation values should be scaled
accordingly. Similarly, pitch-shifting a track should induce
transpositions of annotated fundamental frequency curves,
and if the transposition is sufficiently large, chord labels or
symbolic annotations may change as well. Because the an-
notation spaces for music tasks often exhibit a high degree
of structure, successful application of data augmentation
may require a more sophisticated approach in MIR than in
other domains.

1.1 Our contributions

In this work, we describe the MUDA software architecture
for applying data augmentation to music information re-
trieval tasks. 1 The system is designed to be simple, mod-
ular, and extensible. The design enables practitioners to
develop custom deformations, and combine multiple sim-
ple deformations together into pipelines which can gener-
ate large volumes of reliably deformed, annotated music
data. The proposed system is built on top of JAMS [12],

1 https://bmcfee.github.io/muda

248

which provides a simple container for accessing and trans-
porting multiple annotations for a given track.

We demonstrate the proposed data augmentation archi-
tecture with the application of recognizing instruments in
mixed signals, and show that simple manipulations can
yield improvements in accuracy.

2. RELATED WORK

The first step in developing a solution to an MIR problem is
often to design features which discard information thought
to be irrelevant to the target concept. For example, chroma
features are designed to capture pitch class information and
suppress timbre, loudness, or octave height [18]. Simi-
larly, many authors interested in modeling timbre use Mel-
frequency cepstral coefficients (MFCCs) and discard the
first component to achieve invariance to loudness [19]. This
general strategy makes intuitive sense, but it carries many
limitations. First, it is not necessarily easy to identify all
relevant symmetries in the data: if it was, the modeling
problem would be essentially solved. Second, even if such
properties are easy to identify, it may still be difficult to en-
gineer appropriately invariant features without discarding
potentially useful information. For example, 2-D Fourier
magnitude coefficients achieve invariance to time- and pitch-
transposition, but discard phase coherence [8].

As an alternative to custom feature design, some authors
advocate learning or optimizing features directly from the
data [11]. Not surprisingly, this approach typically requires
large model architectures, and much larger (annotated) data
sets than had previously been used in MIR research. Due
to the high cost of acquiring annotated musical data, it has
so far been difficult to apply these techniques in most MIR
tasks. While some authors have advocated leveraging unla-
beled data to “pre-train” feature representations [6], recent
studies have shown that comparable or better performance
can be achieved with random initialization and fully su-
pervised training [9, 22]. Our goal in this work is to pro-
vide data augmentation tools which may ease the burden
of sample complexity, and make data-driven methodology
more accessible to the MIR community.

Specific instances of data augmentation can be found
throughout the MIR literature, though they are not often
identified as such, nor are they treated systematically in a
unified framework. For example, it is common to apply cir-
cular rotations to chroma features to achieve key invariance
when modeling chord quality [15]. Alternately, synthetic
mixtures of monophonic instruments have been used to
generate more difficult examples when training polyphonic
transcription engines [13]. Some authors even leave the au-
dio content unchanged and only modify labels during train-
ing, as exemplified by the target smearing method of Ull-
rich et al. for training structural boundary detectors [21].

Finally, recent studies have used degraded signals to
evaluate the stability of existing methods for MIR tasks.
The Audio Degradation Toolbox (ADT) was developed for
this purpose, and was used to measure the impact of nat-
uralistic deformations of audio on several tasks, including
beat tracking, score alignment, and chord recognition [16].

Similarly, Sturm and Collins proposed the “Kiki-Bouba
Challenge” as a way to determine whether statistical mod-
els of musical concepts actually capture the defining char-
acteristics of the concept (e.g., genre), or are over-fitting to
spurious correlations [20].

In both of the studies cited above, models are fit to un-
modified data, and evaluated in degraded conditions un-
der the control of the experimenter. Data augmentation
provides the converse of this setting: models are fit to de-
graded data, and evaluated on unmodified examples. The
distinction between the two approaches is critical. The for-
mer attempts to measure the robustness of a system under
synthetic conditions, while the latter attempts to improve
robustness by training under synthetic conditions. Note
that with data augmentation, the evaluation set is left un-
touched by the experimenter, so the resulting comparisons
are unbiased with respect to the underlying distribution
from which the data are sampled. While this does not di-
rectly measure robustness, it has been observed that data
augmentation can improve generalization [10, 14].

3. DATA AUGMENTATION ARCHITECTURE

Our implementation takes substantial inspiration from the
Audio Degradation Toolbox [16]. In principle, the ADT
can be used directly for some forms of data augmentation
simply by applying it to the training set rather than test
set. However, we opted for an independent, Python-based
implementation for a variety of reasons.

First, Python enables object-oriented design, allowing
for structured, extensible, and reusable code. This in turn
facilitates a simple interface shared across all deformation
objects, and makes it easy for practitioners to combine or
extend existing deformations.

Second, we use JAMS [12] both to transport and store
track annotations, and as an internal data structure for pro-
cessing. JAMS provides a unified interface to different an-
notation types, and a convenient framework to manage all
annotations for a particular track. This simplifies the tasks
of maintaining synchronization between audio and annota-
tions, and implementing task-dependent annotation defor-
mations. We also adapt JAMS sandbox fields to provide
data provenance and facilitate reproducibility.

Finally, we borrow familiar software design patterns from
the scikit-learn package [4], such as transformers, pipelines,
and model serialization. These building blocks allow prac-
titioners to quickly and easily assemble complex pipelines
from small, conceptually simple components.

In the remainder of this section, we will describe the
software architecture in more detail. Without loss of gen-
erality, we assume that an annotation (e.g., instrument ac-
tivations) is encoded as a collection of tuples: (time, du-
ration, value, confidence). Note that instantaneous events
can be represented with zero duration, while track-level an-
notations have full-track duration. The value field depends
on the annotation type, and may encode strings, numeric
quantities, or fully structured objects.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 249

3.1 Deformation objects

At the core of our implementation is the concept of a de-
formation object. We will first describe deformation ob-
jects in terms of their methods and abstract properties. Sec-
tion 3.1.1 follows with a concrete, but high-level example.

A deformation object implements one or more trans-
formation methods, each of which applies to either audio,
meta-data, or annotations. Parameters of the deformation
are shared through a state object S. For example, S might
contain the speed-up factor of a time-stretch, or the number
of semi-tones in a pitch-shift. Each transformation method
takes as input a pair (S, x) and returns the transformed au-
dio, meta-data, or annotation x0. Decoupling the defor-
mation object’s instantiation from its state allows multiple
tracks to be processed in parallel by the same object. More-
over, as described in Section 3.3, state objects are reusable,
which promotes reproducibility.

Data augmentation often requires sampling or sweeping
a set of deformation parameters, and instantiating a sepa-
rate deformation object for each parameterization can be
inefficient, especially when the S contains non-trivial data
(e.g., tuning estimates or noise signals). Instead, a defor-
mation object implements a state generator, which may
execute arbitrary transition logic to produce a sequence of
states (S1, S2, . . .). This is implemented efficiently using
Python generators.

Finally, deformation objects may register transforma-
tion functions against the type of an annotation, as de-
scribed by regular expressions. This allows different trans-
formation procedures to be applied to different annotation
types. During execution, the JAMS object is queried for
all annotations matching the specified expression, and the
results are processed by the corresponding transformation
method. For example, the expression “.*” matches all
annotation types, while “chord.*” matches only chord-
type annotations. These patterns need not be unique or
disjoint, though care must be taken to ensure consistent
behavior. Deformations are always applied following the
order in which they are registered.

The abstract transformation algorithm is described in
Algorithm 1. For each state S, the input data J is copied,
transformed into J 0, and yielded back to the caller. Each
J 0 can then be exported to disk, provided as a sample to an
iterative learning algorithm, or passed along to another de-
formation object in a pipeline for further processing. When
all subsequent processing of J 0 has completed, Algorithm 1
may resume computation at line 10 and proceed to the next
state at line 2. Note that because deformation objects are
both iterative (per track) and can be parallelized (across
tracks), batches of deformed data can be generated online
for stochastic learning algorithms.

3.1.1 Example: randomized time-stretching

To illustrate the deformation object interface, we will de-
scribe the implementation of a randomized time-stretch de-
formation object. In this case, each state object contains a
single quantity: the stretch factor r. Algorithm 2 illustrates
the state-generation logic for a randomized time-stretcher,

Algorithm 1 Abstract transformation pseudocode
Input: Deformation object D, JAMS object J
Output: Sequence of transformed JAMS objects J 0

1: function D.TRANSFORM(J)
2: for states S 2 D.STATES(J) do
3: J 0 COPY(J)
4: J 0.audio D.AUDIO(S, J 0.audio)
5: J 0.meta D.METADATA(S, J 0.meta)
6: for transformations g in D do
7: for annotations A 2 J 0 which match g do
8: J 0.A g(S, A)

9: J 0.history APPEND(J 0.history, S)
10: yield J 0

Algorithm 2 Randomized time-stretch state generator
Input: JAMS object J , number of deformations n, range

bounds (r�, r+)
Output: Sequence of states S

1: function RANDOMSTRETCH.STATES(J, {n, r�, r+})
2: for i in 1, 2, . . . , n do
3: Sample r ⇠ U [r�, r+]
4: yield S = {r}

in which some n examples are generated by sampling r
uniformly at random from an interval [r�, r+]. 2

The JAMS object J over which the deformations will
be applied is also provided as input to the state generator.
Though not used in this example, access to J allows the
state generator to pre-compute quantities of interest, such
as track duration — necessary to ensure well-defined out-
puts from target-smearing deformations — or tuning esti-
mates, which are used by pitch-shift deformations to deter-
mine when a shift is large enough to alter note labels.

Once a state S has been generated, the AUDIO() de-
formation method — D.AUDIO(S, J.audio) — applies the
time-stretch to the audio signal, which is stored within the
JAMS sandbox upon instantiation. 3 Similarly, track-level
meta-data can be modified by the METADATA() method. In
this example, time-stretching will change the track dura-
tion, which is recorded in the JAMS meta-data field.

Next, a generic annotation deformation would be reg-
istered to the pattern “.*” and apply the stretch factor to
all time and duration fields of all annotations. This defor-
mation would leave the annotation values untouched, since
not all annotation types have time-dependent values.

Finally, any annotations whose value fields depend on
time, such as tempo, can be modified directly by regis-
tering the transformation function against the appropriate
type pattern, e.g., “tempo”. Other time-dependent type
deformations would be registered separately as needed.

The time-stretching example is simple, but it serves to
illustrate the flexibility of the architecture. It is straight-
forward to extend this example into more sophisticated de-

2 The parameters n, r�, r
+

are actually properties of the deformation
object, but are listed here as method parameters to simplify exposition.

3 The sandbox provides unstructured storage space within a JAMS ob-
ject, which is used in our framework as a scratch space for audio signals.

250 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

formations with structured state generators to sweep over
deterministic parameter grids. For example, an additive
background noise deformation could be parameterized by
a collection of noise sources and a range of gain parame-
ters, and generate one example for each unique combina-
tion of source and gain.

3.2 Pipelines and bypasses

Algorithm 1 describes the process by which a deformation
object turns a single annotated audio example into a se-
quence of deformed examples. If we were interested in ex-
perimenting with only a single type of augmentation (e.g.,
time stretching), this would suffice. However, some appli-
cations may require combining or cascading multiple types
of deformation, and we prefer a unified interface that obvi-
ates the need for customized data augmentation scripts.

Here, we draw inspiration from scikit-learn in defin-
ing pipeline objects. The general idea is simple: two or
more deformation objects Di can be chained together, and
treated as a single, integrated deformation object. More
precisely, for a deformation pipeline P composed of k stages:

P = (D1, D2, . . . , Dk),

examples are generated by a depth-first traversal of the
Cartesian product of the corresponding state spaces ⌃i:

⌃P = ⌃1 ⇥ ⌃2 ⇥ · · ·⇥ ⌃k.

One input example therefore produces |⌃P | =
Qk

i=1 |⌃i|
outputs. By using generators rather than explicit lists of
states, we ensure that only k + 1 examples (counting the
input) are ever in memory at any time. In most cases, k
is much smaller than |⌃P |, which provides substantial im-
provements to memory efficiency.

Finally, we introduce the bypass object, which is used
to mark individual pipeline stages as optional. Bypasses
are useful when it is difficult to encode a special no trans-
formation state within a deformation object, such as in the
randomized time-stretch example of Algorithm 2. The in-
ternal logic of a bypass object is simple: first, pass the in-
put directly through unmodified, and then generate sam-
ples from the contained deformation object as usual. By-
passes can be used to ensure that the original examples are
propagated through the pipeline unscathed, and the result-
ing augmented data set is a strict superset of the clean data.

3.3 Reproducibility and data provenance

When modifying data for statistical modeling purposes,
maintaining transparency is of utmost importance to en-
sure reproducibility and accurate interpretation of results.
This ultimately becomes a question of data provenance [5]:
a record of all transformations should be kept, preferably
attached as closely as possible to the data. Rather than
force practitioners to handle book-keeping, we automate
the process from within the deformation engine. This is
accomplished at line 9 of Algorithm 1 by embedding the
state object S (and, in practice, the parameters used to con-
struct the deformation object D) within the JAMS object

Table 1. The 15 instrument labels used in our experiments.
Instrument # Tracks # Artists

drum set 65 57
electric bass 64 53
piano 42 23
male singer 38 34
clean electric guitar 37 32
vocalists 27 25
synthesizer 27 21
female singer 25 17
acoustic guitar 24 16
distorted electric guitar 21 20
auxiliary percussion 18 17
double bass 16 13
violin 14 5
cello 11 8
flute 11 6

after each deformation is applied. Each J 0 generated at
line 10 thus contains a full transactional history of all mod-
ifications required to transform J into J 0. For this reason,
stochastic deformations are designed so that all random-
ness is contained within the state generator, and transfor-
mations are all deterministic.

In addition to facilitating reproducibility, maintaining
transformation provenance allows practitioners to compute
a wide range of deformations, and later filter the results to
derive subsets generated by different augmentation param-
eters.

To further facilitate reproducibility and sharing of ex-
perimental designs, the proposed architecture supports se-
rialization of deformation objects and pipelines into a sim-
ple, human-readable JavaScript object notation (JSON) for-
mat. Once a pipeline has been constructed, it can be ex-
ported, edited as plain text, shared, and reconstructed. This
feature also simplifies the process of applying several dif-
ferent sets of deformation parameters, and eliminates the
need for writing a custom script for each setting.

4. EXAMPLE: INSTRUMENT RECOGNITION

We applied data augmentation to the task of instrument
recognition in mixed audio signals. For this task, we used
the MedleyDB dataset, which consists of 122 tracks, span-
ning a variety of genres and instrumentation [3]. Each
track is strongly annotated with time-varying instrument
activations derived from the recording stems. MedleyDB
is a small, but well-annotated collection, which we selected
because it should be possible to over-fit with a reasonably
complex model. Our purpose here is not to achieve the
best possible recognition results, but to investigate utility
of data augmentation for improving generalization. How-
ever, because of the small sample size, we limited the ex-
periment to cover only the 15 instruments listed in Table 1.

For evaluation purposes, each test track is split into dis-
joint one-second clips. The system is then tasked with
recognizing the instruments active within each clip. The
system is evaluated according to the average track-wise
mean (label-ranking) average precision (LRAP), and per-

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 251

instrument F -score over one-second clips.

4.1 Data augmentation

The data augmentation pipeline consists of four stages:

Pitch shift by n 2 {�1, 0, +1} semitones.

Time stretch by a factor of r 2 �2�1/2, 1.0, 21/2

.

Background noise (bypass) under three conditions: sub-
way,crowded concert hall,and night-time city noise.
Noise clips were randomly sampled and linearly mixed
with the input signal y using random weights
↵ ⇠ U [0.1, 0.4]:

y0 (1� ↵) · y + ↵ · ynoise.

Dynamic range compression (bypass) under two settings
drawn from the Dolby E standards [7]: speech, and
music (standard).

Pitch-shift and time-stretch operations were implemented
with Rubberband [1], and dynamic range compression was
implemented using the compand function of sox [2]. Note
that the first two stages include null parameter settings n =
0 and r = 1. Bypasses on the final two stages ensure that
all combinations of augmentation are present in the final
set. The full pipeline produces

|⌃P | = 3⇥ 3⇥ (3 + 1)⇥ (2 + 1) = 108

variants of each input track. To simplify the experiments,
we only compare the cumulative effects of the above aug-
mentations. This results in five training conditions of in-
creasing complexity:

• (N) no augmentation,
• (P) pitch shift,
• (PT) pitch shift and time stretch,
• (PTB) pitch shift, time stretch, and noise,
• (PTBC) all stages.

4.2 Acoustic model

The acoustic model used in these experiments is a deep
convolutional network. The input to the network consists
of log-amplitude, constant-Q spectrogram patches extracted
with librosa [17]. Each example spans approximately one
second of audio, corresponding to 44 frames at a hop length
of 512 samples and sampling rate of 22050 Hz. Constant-
Q spectrograms cover the range of C2 (65.41 Hz) to C8
(4186 Hz) at 36 bins per octave, resulting in time-frequency
patches X 2 R216⇥44. Instrument activations are aggre-
gated into a single binary label vector, such that an instru-
ment is deemed active if its on-time within the sample ex-
ceeds 0.25 seconds.

Constant-Q representations are linear in both time and
pitch, a property that can be exploited by convolutional
neural networks to achieve translation invariance. Thus a
four-layer model is designed to estimate the presence of

zero or more instruments in a time-frequency patch. For-
mally, an input X , is transformed into an output Z, via a
composite nonlinear function F(·| ⇥) with parameters ⇥.
This is achieved as a sequential cascade of L = 4 opera-
tions, f`(·| ✓`), referred to as layers, the order of which is
given by `:

Z = F(X| ⇥) = fL(· · · f2(f1(X| ✓1)| ✓2)| ✓L) (1)

The first two layers, ` 2 {1, 2}, are convolutional, ex-
pressed by the following:

Z
`

= f
`

(X
`

| ✓
`

) = h(W ~ X
`

+ b), ✓
`

= [W, b] (2)

Here, the valid convolution, ~, is computed by convolving
a 3D input tensor, X`, consisting of N feature maps, with
a collection of M 3D-kernels, W , followed by an additive
vector bias term, b, and transformed by a point-wise ac-
tivation function, h(·). In this formulation, X` has shape
(N, d0, d1), W has shape (M, N, m0, m1), and the output,
Z`, has shape (M, d0�m0+1, d1�m1+1). Max-pooling
is applied in time and frequency, to further accelerate com-
putation by reducing the size of feature maps, and allowing
a small degree of scale invariance in both time and pitch.

The final two layers, ` 2 {3, 4}, are fully-connected
matrix products, given as follows:

Z` = f`(X`| ✓`) = h(WX` + b), ✓` = [W, b] (3)

The input to the `th layer, X`, is flattened to a column
vector of length N , projected against a weight matrix W of
shape (M, N), added to a vector bias term, b, of length M ,
and transformed by a point-wise activation function, h(·).

The network is parameterized thusly: `1 uses W with
shape (24, 1, 13, 9), followed by (2, 2) max-pooling over
the last two dimensions, and a rectified linear unit (ReLU)
activation function: h(x) ··= max(x, 0); `2 has filter pa-
rameters W with shape (48, 24, 9, 7), followed by (2, 2)
max-pooling over the last two dimensions, and a ReLU ac-
tivation function; `3 uses W with shape (17280, 96) and
a ReLU activation function; finally, `4 uses W with shape
(96, 15) and a sigmoid activation function.

During training, the model optimizes cross-entropy loss
via mini-batch stochastic gradient descent, using batches
of n = 64 randomly selected patches and a constant learn-
ing rate of 0.01. Dropout is applied to the activations of
the penultimate layer, ` = 3 with dropout probability 0.5.
Quadratic regularization is applied to the weights of the fi-
nal layer, ` = 4, with a penalty factor of 0.02. This helps
prevent numerical instability by keeping the weights from
growing arbitrarily large. The model is check-pointed af-
ter every 1000 batches (up to 50000 batches), and a vali-
dation set is used to select the parameter setting achieving
the highest mean LRAP.

4.3 Evaluation

Fifteen random artist-conditional partitions of the Med-
leyDB collection were generated with a train/test artist ra-
tio of 4:1. For the purposes of this experiment, MusicDelta
tracks were separated by genre into a collection of distinct

252 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

Figure 1. Test-set score distributions (mean track-wise
label-ranking average precision), over all train-test splits.
Mean scores are indicated by •. Boxes cover the 25–75
percentiles, and whiskers cover the 5–95 percentiles.

pseudo-artists. This results in 75 unique artist identifiers
for the 122 tracks. For each train/test split, the training
set was further partitioned into training and validation sets,
again at a ratio of 4:1. To evaluate performance, we com-
pute for each test track the mean label-ranking average pre-
cision (LRAP) over all disjoint one-second patches.

4.3.1 Label ranking results

Figure 1 illustrates the distribution of test-set performance
across splits. Between the no-augmentation condition (N)
and pitch-shifting augmentation (P), there is a small, but
consistent improvement in performance from an average
of 0.655 to 0.677. This is in keeping with the motivation
for this work, and our expectations when training a (pitch)-
convolutional model on a small sample. If the amount of
clean data is too small, the model may easily over-fit by
capturing irrelevant, correlated properties. (For example,
if all of the piano recordings are in one key, the model
may simply capture the key rather than the characteristics
of piano.) Adding pitch-shifted examples should help the
model disambiguate these properties.

Subsequent deformations do not appear to improve over
condition (P). In each case, no significant difference from
the pitch-shift condition could be detected by a Bonferroni-
corrected Wilcoxon signed-rank test. However, all defor-
mation conditions consistently outperform the baseline (N).

Although the difference in average performance is rel-
atively small, the upper and lower quantiles are notably
higher in (P), (PT), and (PTB) conditions. This indicates
a reduction in the tendency to over-fit the relatively small
training sets used in these experiments.

4.3.2 Frame-tagging results

To investigate the effects of augmentation on each instru-
ment class, we computed the F -score of frame-level instru-
ment recognition under each training condition. Results
were averaged first across test tracks in a split, and then
across all splits. Figure 2 depicts the change in F -score
relative to the baseline condition (N): �F = (F � FN).

The trend is primarily positive: in all but three classes,
all augmentation conditions provide consistent improve-
ment. The three exceptions are synthesizer, female singer,
and violin. In the latter two cases, negative change is only
observed after introducing time-stretch deformations, which

Figure 2. Per-class change in mean test-set F -score
for each augmentation condition (F), relative to the no-
augmentation baseline (FN).

may unnaturally distort vibrato characteristics and render
these classes more difficult to model. The effect is partic-
ularly prominent for violin, which has the fewest unique
artists, and produces the fewest training examples.

The reduction in F -score for synthesizer in the (PT)
condition may explain the corresponding reduction in Fig-
ure 1, and may be due to a confluence of factors. First,
many of the synthesizer examples in MedleyDB have low
amplitudes in the mix, and may be difficult to model in
general. Second, the class itself may be ill-defined, as syn-
thesizer encompasses a range of instruments and timbres
which may be artist-dependent and idiosyncratic. Simple
augmentations can have adverse effects if the perturbed ex-
amples are insufficiently varied from the originals, which
may be the case here for (P) and (PT). However, the in-
clusion of background noise (PTB) results in a slight im-
provement over the baseline.

5. CONCLUSION

The data augmentation framework provides a simple and
flexible interface to train models on distorted data. The
instrument recognition experiment demonstrates that even
simple deformations such as pitch-shifting can improve gen-
eralization, but that some care should be exercised when
selecting deformations depending on the characteristics of
the problem. We note that these results are preliminary,
and do not fully exploit the capabilities of the augmenta-
tion framework. In future work, we will investigate the
data augmentation for a variety of MIR tasks.

6. ACKNOWLEDGEMENTS

BM acknowledges support from the Moore-Sloan Data Sci-
ence Environment at NYU. This material is partially based
upon work supported by the National Science Foundation,
under grant IIS-0844654.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 253

7. REFERENCES

[1] Rubber band library v1.8.1, October 2012. http://
rubberbandaudio.com/.

[2] sox v14.4.1, February 2013. http://sox.
sourceforge.net/.

[3] Rachel Bittner, Justin Salamon, Mike Tierney,
Matthias Mauch, Chris Cannam, and Bello, Juan
Pablo. MedleyDB: a multitrack dataset for annotation-
intensive mir research. In 15th International Society
for Music Information Retrieval Conference, ISMIR,
2014.

[4] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Nic-
ulae, Peter Prettenhofer, Alexandre Gramfort, Jaques
Grobler, et al. API design for machine learning
software: experiences from the scikit-learn project.
In European Conference on Machine Learning and
Principles and Practices of Knowledge Discovery in
Databases, 2013.

[5] Peter Buneman, Sanjeev Khanna, and Wang-Chiew
Tan. Data provenance: Some basic issues. In FST TCS
2000: Foundations of software technology and theoret-
ical computer science, pages 87–93. Springer, 2000.

[6] Sander Dieleman, Philémon Brakel, and Benjamin
Schrauwen. Audio-based music classification with a
pretrained convolutional network. In 12th international
society for music information retrieval conference, IS-
MIR, 2011.

[7] Dolby Laboratories, Inc. Standards and practices for
authoring Dolby Digital and Dolby E bitstreams, 2002.

[8] Daniel PW Ellis and Thierry Bertin-Mahieux. Large-
scale cover song recognition using the 2d fourier trans-
form magnitude. In The 13th international society for
music information retrieval conference, ISMIR, 2012.

[9] Xavier Glorot, Antoine Bordes, and Yoshua Ben-
gio. Deep sparse rectifier networks. In Proceedings of
the 14th International Conference on Artificial Intelli-
gence and Statistics. JMLR W&CP Volume, volume 15,
pages 315–323, 2011.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. arXiv
preprint arXiv:1502.01852, 2015.

[11] Eric J Humphrey, Juan Pablo Bello, and Yann LeCun.
Moving beyond feature design: Deep architectures and
automatic feature learning in music informatics. In The
13th international society for music information re-
trieval conference, ISMIR, 2012.

[12] Eric J Humphrey, Justin Salamon, Oriol Nieto, Jon
Forsyth, Rachel M Bittner, and Bello, Juan Pablo.

JAMS: A JSON annotated music specification for re-
producible MIR research. In 15th International Society
for Music Information Retrieval Conference, ISMIR,
2014.

[13] Holger Kirchhoff, Simon Dixon, and Anssi Klapuri.
Multi-template shift-variant non-negative matrix de-
convolution for semi-automatic music transcription. In
The 13th international society for music information
retrieval conference, ISMIR, 2012.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, NIPS, pages 1097–1105, 2012.

[15] Kyogu Lee and Malcolm Slaney. Acoustic chord tran-
scription and key extraction from audio using key-
dependent HMMs trained on synthesized audio. Audio,
Speech, and Language Processing, IEEE Transactions
on, 16(2):291–301, 2008.

[16] Matthias Mauch and Sebastian Ewert. The audio
degradation toolbox and its application to robustness
evaluation. In 14th International Society for Music In-
formation Retrieval Conference, ISMIR, 2013.

[17] Brian McFee, Matt McVicar, Colin Raffel, Dawen
Liang, Dan Ellis, Douglas Repetto, Petr Viktorin, and
Joo Felipe Santos. librosa: 0.4.0rc1, March 2015.

[18] Meinard Müller and Sebastian Ewert. Chroma tool-
box: Matlab implementations for extracting variants
of chroma-based audio features. In 12th International
Conference on Music Information Retrieval, ISMIR,
2011.

[19] Elias Pampalk. A matlab toolbox to compute music
similarity from audio. In International Symposium on
Music Information Retrieval (ISMIR2004), 2004.

[20] Bob L Sturm and Nick Collins. The Kiki-Bouba Chal-
lenge: Algorithmic composition for content-based
MIR Research & Development. In International Sym-
posium on Music Information Retrieval, 2014.

[21] Karen Ullrich, Jan Schlüter, and Thomas Grill. Bound-
ary detection in music structure analysis using convo-
lutional neural networks. In 15th International Society
for Music Information Retrieval Conference, ISMIR,
2014.

[22] Matthew D Zeiler, M Ranzato, Rajat Monga, M Mao,
K Yang, Quoc Viet Le, Patrick Nguyen, A Senior, Vin-
cent Vanhoucke, Jeffrey Dean, et al. On rectified linear
units for speech processing. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 3517–3521. IEEE, 2013.

254 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

