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ABSTRACT

In this paper, we present a novel architecture for audio
chord estimation using a hybrid recurrent neural network.
The architecture replaces hidden Markov models (HMMs)
with recurrent neural network (RNN) based language mod-
els for modelling temporal dependencies between chords.
We demonstrate the ability of feed forward deep neural
networks (DNNs) to learn discriminative features directly
from a time-frequency representation of the acoustic sig-
nal, eliminating the need for a complex feature extraction
stage. For the hybrid RNN architecture, inference over
the output variables of interest is performed using beam
search. In addition to the hybrid model, we propose a mod-
ification to beam search using a hash table which yields im-
proved results while reducing memory requirements by an
order of magnitude, thus making the proposed model suit-
able for real-time applications. We evaluate our model's
performance on a dataset with publicly available annota-
tions and demonstrate that the performance is comparable
to existing state of the art approaches for chord recogni-
tion.

1. INTRODUCTION

The ideas presented in this paper are motivated by the re-
cent progress in end-to-end machine learning and neural
networks. In the last decade, it has been shown that given
a large dataset, deep neural networks (DNNs) are capable
of learning useful features for discriminative tasks. This
has led complex feature extraction methods to be replaced
with neural nets that act directly on raw data or low level
features. Current state-of-the-art methods in speech recog-
nition and computer vision employ DNNs for feature ex-
traction [12]. In addition to feature learning, recurrent neu-
ral networks (RNNs) have been shown to be very power-
ful models for temporal sequences [9, 12]. In the field of
Music Information Retrieval (MIR), various studies have
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applied neural network based models to different tasks [3,
11, 15]. These experiments have been motivated by the
fact that hand-crafting features to extract musically rele-
vant information from audio is a difficult task. Existing
approaches in MIR would benefit greatly if feature extrac-
tion could be automated.

Audio chord recognition is a fundamental problem in
MIR (see [13] for a review). At a high level, popular chord
recognition algorithms follow a pipeline similar to the one
followed in speech. Most systems are comprised of an
acoustic model which is used to process the acoustic in-
formation present in the audio signal. The estimates of the
acoustic model are further refined by a language model that
models the temporal relationships and structure present in
sequences of chord symbols. Our proposed approach de-
viates from existing approaches in two fundamental ways.
We use DNNs to learn discriminative features from a time-
frequency representation of the audio. This is contrary to
the common approach of extracting chroma features (and
their many variants) as a preprocessing step. Secondly, we
generalise the popular method of using a Hidden Markov
Model (HMM) language model with a more powerful RNN
based language model. Finally, we combine the acoustic
and language models using a hybrid RNN architecture pre-
viously used for phoneme recognition and music transcrip-
tion [5, 14].

In the past, RNNs have been applied to chord recog-
nition and music transcription in a sequence transduction
framework [3, 4]. However, these models suffer from an
issue known as teacher forcing, which occurs due to the
discrepancy between the training objective and the way
the RNN is used at test time. During training, RNNs are
trained to predict the output at any time step, given the cor-
rect outputs at all preceding steps. This is in contrast to
how they are used at test time, where the RNN is fed pre-
dictions from previous time steps as inputs to the model.
This can lead to an unsuitable weighting of the acoustic
and symbolic information, which can quickly cause errors
to accumulate at test time. The hybrid RNN architecture
resolves this issue by offering a principled way for explic-
itly combining acoustic and symbolic predictions [14].

The hybrid RNN model outputs a sequence of condi-
tional probability distributions over the output variables
(Section 3). The structure of the graphical model makes
the problem of exactly estimating the most likely sequence
of outputs intractable. Beam search is a popular heuris-
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tic graph search algorithm which is used to decode condi-
tional distributions of this form. Beam search when used
for decoding temporal sequences is fundamentally limited
by the fact that sequences that are quasi-identical (differ
at only few time steps) can occupy most of the positions
within the beam, thus narrowing the range of possibilities
explored by the search algorithm. We propose a modifi-
cation to the beam search algorithm which we call hashed
beam search in order to encourage diversity in the explored
solutions and reduce computational cost.

The rest of the paper is organised as follows: Section 2
describes the feature learning pipeline. Section 3 briefly in-
troduces the hybrid RNN architecture. Section 4 describes
the proposed modification to the beam search algorithm.
Experimental details are provided in Section 5, results are
outlined in Section 6 and the paper is concluded in Section
7.

2. FEATURE LEARNING

We follow a pipeline similar to the one adopted in [3, 15]
for feature extraction. We transform the raw audio signal
into a time-frequency representation with the constant-Q
transform [6]. We first down-sample the audio to 11.025
kHz and compute the CQT with a hop-size of 1024 sam-
ples. The CQT is computed over 7 octaves with 24 bins per
octave yielding a 168 dimensional vector of real values.
One of the advantages of using the CQT is that the rep-
resentation is low dimensional and linear in pitch. Com-
puting the short-time Fourier transform over long analysis
windows would lead to a much higher dimensional rep-
resentation. Lower dimensional representations are useful
when using DNNs since we can train models with fewer
parameters, which makes the parameter estimation prob-
lem easier.

After extracting CQT frames for each track, we use a
DNN to classify each frame to its corresponding chord la-
bel. As mentioned earlier, DNNs have been shown to be
very powerful classifiers. DNNs learn complex non-linear
transformations of the input data through their hidden lay-
ers. In our experiments we used DNNs with 3 hidden lay-
ers. We constrained all the layers to have the same number
of hidden units to simplify the task of searching for good
DNN architectures. The DNNs have a softmax output layer
and the model parameters are obtained using maximum
likelihood estimation.

Once the DNNs are trained, we use the activations of the
final hidden layer of the DNN as features. In our experi-
ments we observed that the acoustic model performance
was improved (⇠ 3% absolute improvement in frame-level
accuracy) if we provided each frame of features with con-
text information. Context information was provided by
performing mean and variance pooling over a context win-
dow around the central frame of interest [3]. A context
window of length 2k + 1 is comprised of the central frame
of interest, along with k frames before and after the central
frame. In our experiments we found that a context window
of 7 frames provided the best results.

We trained the network with mini-batch stochastic gra-

Figure 1. Feature Extraction Pipeline

dient descent. Instead of using learning rate update sched-
ules, we use ADADELTA which adapts the learning rate
over iterations [18]. In our experiments we found Dropout
was essential to improve generalisation [16]. We found a
Dropout rate of 0.3 applied to all layers of the DNN to be
optimal for controlling overfitting. Once the models are
trained, we use the model that performs best on the vali-
dation set to extract features. In our experiments, the best
performing model had 100 hidden units in each layer. Fig-
ure 1 is a graphical representation of the feature extraction
pipeline. In section 6, we compare DNN acoustic models
with different feature inputs.

3. HYBRID RECURRENT NEURAL NETWORKS

Similar to language, chord sequences are highly correlated
in time. We propose exploiting this structure for audio
chord estimation using hybrid RNNs. The hybrid RNN
is a generative graphical model that combines the predic-
tions of an arbitrary frame level classifier with the predic-
tions of an RNN language model. For temporal problems,
the predictions of the system can be greatly improved by
modelling the relationships between outputs, analogous to
language modelling in speech. Typically, HMMs are em-
ployed in order to model and exploit this structure. Hybrid
RNNs generalise the HMM architecture by using powerful
RNN language models.

3.1 RNN Language Model

RNNs can be used to define a probability distribution over
a sequence z = {z⌧ |0  ⌧  T} in the following manner:

P (z) =
T

Y

t=1

P (zt|At) (1)

where At ⌘ {z⌧ |⌧ < t} is the sequence history at time t.
The above factorisation is achieved by allowing the RNN
at time t � 1 to predict the outputs at the next time step,
yielding the conditional distribution P (zt|At).

The RNN is able to model temporal relationships via its
hidden state which at any time t has recurrent connections
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to the hidden state at t � 1. The hidden state is updated
according to the following equation:

ht = �(Wzhzt�1 + Whhht�1 + bh) (2)

where Wzh are the weights from the inputs at t � 1 to the
hidden units at t, Whh are the recurrent weights between
hidden units at t � 1 and t and bh are the hidden biases.
The form of the hidden state (Equation 2) implies that the
predictions at time t are explicitly conditioned on the en-
tire sequence history At. This is contrary to HMMs which
are constrained by the Markov property. Therefore, the-
oretically RNNs can model complex and long-term tem-
poral dependencies between outputs. The parameters of
the RNN are estimated by using stochastic gradient based
methods. Although theoretically very powerful, RNNs are
limited by the effectiveness of the optimisation method [2].
The hidden units described above can be replaced by Long-
Short Term Memory (LSTM) units in order to improve the
parameter estimation and generalisation capabilities of the
RNN (see [10] for a review). In our model we use RNNs
with LSTM memory units to model the symbolic structure
of chord sequences.

3.2 Hybrid Architecture

Given a sequence of acoustic frames x and a sequence of
corresponding chord outputs z, the Hybrid RNN model
factorises the joint probability of x and z according to the
following equation:

P (z, x) = P (z1 . . . zT , x1 . . . xT ) (3)

= P (z1)P (x1|z1)
T

Y

t=2

P (zt|At)P (xt|zt)

/ P (z1)
P (z1|x1)

P (z1)

T
Y

t=2

P (zt|At)
P (zt|xt)

P (zt)
.

By restricting the acoustic model to operate on an acous-
tic frame xt independent of previous inputs and outputs,
the distributions P (zt|At) and P (zt|xt) can be indepen-
dently modelled by an RNN and an arbitrary frame-level
classifier, respectively. The form of the joint probability
distribution makes maximum likelihood estimation of the
model parameters using gradient based optimisers easy.
The acoustic and language model terms separate out when
optimising the log-likelihood and the model parameters
can be trained using gradient based methods according to
the following equations where ⇥a, ⇥l are parameters of
the acoustic and language models, respectively:

@ log P (z, x)

@⇥a
=

@

@⇥a

T
X

t=1

log P (zt|xt) (4)

@ log P (z, x)

@⇥l
=

@

@⇥l

T
X

t=2

log P (zt|At). (5)

Although the hybrid RNN has a similar structure (seper-
ate acoustic and language models) to the sequence trans-
duction model in [9], the hybrid RNN explicitly combines

the acoustic and language model distributions. The trans-
duction model in [9], models unaligned sequences with an
implicit exponential duration.

The property that the acoustic and language models can
be trained independently has some useful implications. In
MIR, it is easier to obtain chord and note transcriptions
from the web as compared to audio data due to copyright
issues. We can use the abundance of transcribed data to
train powerful language models for various tasks, without
the need for annotated, aligned audio data.

4. INFERENCE

The hybrid RNN generalises the HMM graph by condi-
tioning zt on the entire sequence history At, as compared
to the HMM graph where zt is only conditioned on zt�1

(Equation 3). This conditioning allows musicological struc-
ture learnt by the language model to influence successive
predictions. One consequence of the more general graph-
ical structure is that at test time, inference over the output
variables at t requires knowledge of all predictions made
till time t. At any t, the history At is still uncertain. Mak-
ing estimates in a greedy chronological manner does not
necessary yield good solutions. Good solutions correspond
to sequences that maximise the likelihood globally.

Beam search is a standard search algorithm used to de-
code the outputs of an RNN [5, 9, 14]. Beam search is a
breadth-first graph search algorithm which maintains only
the top w solutions at any given time. At time t, the algo-
rithm generates candidate solutions and their likelihoods at
t + 1, for all the sub-sequences present in the beam. The
candidate solutions are then sorted by log-likelihood and
the top w solutions are kept for further search. A beam ca-
pacity of 1 is equivalent to greedy search and a beam width
of NT is equivalent to an exhaustive search, where N is
the number of output symbols and T is the total number of
time steps.

Beam search suffers from a pathological condition when
used for decoding sequences. Quasi-identical sequences
with high likelihoods can saturate the beam. This limits
the range of solutions evaluated by the algorithm. This is
especially true when decoding long sequences. The per-
formance of beam search can be improved by pruning so-
lutions that are unlikely. The dynamic programming (DP)
based pruned beam search algorithm makes better use of
the available beam capacity w [3, 5]. The strategy em-
ployed for pruning is that at any time t, the most likely
sequence with output symbol zt 2 C is considered and
other sequences are discarded, where C is the set of output
symbols.

Although the DP beam search algorithm performs well
in practice [3,5], pruning based on the last emitted symbol
is a strict constraint. In the next section we propose a mod-
ification to the beam search algorithm that is more general
and allows flexible design to enforce diversity in the set
of solutions that are explored and to reduce computational
cost.
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4.1 Hashed Beam Search

As discussed before, beam search can lead to poor esti-
mates of the optimal solution due to saturation of the beam
with similar sequences. The efficiency of the search algo-
rithm can be improved by pruning solutions that are suf-
ficiently similar to a sequence with higher likelihood. We
propose a more general variant of the pruned beam search
algorithm where the metric for similarity of sequences can
be chosen according to the given problem. We encode the
similarity metric in the form of a hash function that deter-
mines the similarity of 2 sequences. Given 2 solutions with
the same hash value, the solution with the higher likelihood
is retained.

The proposed algorithm is more general and flexible
since it allows the similarity metric to be chosen based on
the particular instance of the decoding problem. We de-
scribe the algorithm for decoding chord sequences. We
let the hash function be the last n emitted symbols. With
this hash function, if there are two candidate solutions with
the same sequence of n symbols at the end, then the hash
function produces the same key and we retain the solu-
tion with the higher likelihood. When n = 1, the algo-
rithm is equivalent to the DP beam search algorithm. When
n = len(sequence), then the algorithm is equivalent to reg-
ular beam search. Therefore, by increasing the value of n,
we can linearly relax the constraint used for pruning in the
DP-like beam search algorithm.

Another generalisation that can be achieved with the
hash table is that for each hash key, we can maintain a list
of k solutions using a process called chaining [17]. This
is more general than the DP beam search algorithm where
only the top solution is kept for each output symbol. Algo-
rithm 1 describes the proposed hashed beam search algo-
rithm, while Algorithm 2 describes the beam objects. The
time complexity of Algorithm 1 is O(NTw log w). Even
though the time complexity of the proposed algorithm is
the same as regular beam search, the algorithm is able to
significantly improve performance by pruning unlikely so-
lutions (see Section 6). In Algorithms 1 and 2, s is a sub-
sequence, l is the log-likelihood of s and fh is the hash
function.

Algorithm 1 Hashed Beam Search
Find the most likely sequence z given x with a beam
width w.
beam new beam object
beam.insert(0, {})
for t = 1 to T do

new beam new beam object
for (l, s) in beam do

for z in C do
l0 = log Plm(z|s)Pam(z|xt)� log P (z)
new beam.insert(l + l0, {s, z})

beam new beam
return beam.pop()

Although the description of the proposed algorithm has
been within the context of decoding chord sequences, var-

ious other measures of similarity can be constructed de-
pending upon the problem. For example, for chord and
speech recognition, we can use the last n unaligned sym-
bols as the hash function (results with chords were uninter-
esting). For problems where the predictions are obtained
from an RNN and frame-based similarity measures are in-
sufficient, we can use a vector quantised version of the final
hidden state as the key for the hash table entry.

Algorithm 2 Description of beam objects given w, k, fh

Initialise beam object
beam.hashQ = dictionary of priority queues⇤

beam.queue = indexed priority queue of length w⇤⇤

Insert l, s into beam
key= fh(s)
queue = beam.queue
hashQ = beam.hashQ[key]
fits in queue = not queue.full() or l �queue.min()
fits in hashQ = not hashQ.full() or l �hashQ.min()
if fits in queue and fits in hashQ then

hashQ.insert(l, s)
if hashQ.overfull() then

item = hashQ.del min()
queue.remove(item)

queue.insert(l, s)
if queue.overfull() then

item = queue.del min()
beam.hashQ[fh(item.s)].remove(item)

⇤ The dictionary maps hash keys to priority queues of
length k which maintain (at most) the top k entries at all
times.
⇤⇤ An indexed priority queue allows efficient random ac-
cess and deletion [1].

5. EXPERIMENTS

5.1 Dataset

Unlike other approaches to chord estimation, our proposed
approach aims to learn the audio features, the acoustic model
and the language model from the training data. Therefore,
maximum likelihood training of the acoustic and language
models requires sufficient training data, depending on the
complexity of the chosen models. Additionally, we require
the raw audio for all the examples in the dataset in order
to train the acoustic model which operates on CQTs ex-
tracted from the audio. In order to satisfy these constraints,
we use the dataset used for the MIREX Audio Chord Es-
timation Challenge. The MIREX data is comprised of two
datasets. The first dataset is the collected Beatles, Queen
and Zweieck datasets 1 . The second dataset is an abridged
version of the Billboard dataset [7].

The Beatles, Queen and Zweieck dataset contains anno-
tations for 217 tracks and the Billboard dataset contains an-
notations for 740 unique tracks. The corresponding audio
for the provided annotations are not publicly available and

1 http://www.isophonics.net/

130 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



we had to acquire the audio independently. We were able
to collect all the audio for the Beatles, Queen and Zweieck
dataset and 650 out of the 740 unique tracks for the Bill-
board dataset (see footnote 2 for details), leading to a total
of 867 tracks for training and testing 3 . Although we are
not able to directly compare results with MIREX evalua-
tions due to the missing tracks, we show that the training
data is sufficient for estimating models of sufficient accu-
racy and the results are comparable to the top performing
entries submitted to MIREX 2014. Keeping in mind the
limited number of examples in the dataset, all the ground
truth chord annotations were mapped to the major/minor
chord dictionary which is comprises of 12 major chords,
12 minor chords and one no chord class. All results are re-
ported on 4-fold cross-validation experiments on the entire
dataset. For training the acoustic and language models, the
training data was further divided into a training (80%) and
validation split (20%).

5.2 Acoustic Model Training

The features obtained from the DNN feature extraction
stage (Section 2) are input to an acoustic model which pro-
vides a posterior probability over chord labels, P (zt|xt)
given an input feature vector. Similar to the feature extrac-
tion, we use DNNs with a softmax output layer to model
the probabilities of output chord classes. We train models
with 3 hidden layers with varying number of hidden units.
The acoustic models are trained on a frame-wise basis, in-
dependently of the language models. We use stochastic
mini-batch gradient descent with ADADELTA for estimat-
ing the DNN parameters. We use a constant Dropout rate
of 0.3 on all the DNN layers to reduce overfitting. Dropout
was found to be essential for good generalisation perfor-
mance, yielding an absolute performance improvement of
up to 4% on the test set. We used a mini-batch size of 100
and early stopping for training. Training was stopped if
the log-likelihood of the validation set did not increase for
20 iterations over the entire training set. Unlike the feature
extraction stage, we do not discard any of the trained mod-
els. Instead of using only the best performing model on the
validation set, we average the predictions of all the trained
models to form an ensemble of DNNs [8] as the acoustic
model. We found that simply averaging the predictions of
the acoustic classifiers led to an absolute improvement of
up to 3% on frame classification accuracies.

5.3 Language Model Training

As outlined in Section 3, we use RNNs with LSTM units
for language modelling. The training data for the language
models is obtained by sampling the ground truth chord
transcriptions at the same frame-rate at which CQTs are
extracted from the audio waveforms. We use RNNs with 2
layers of hidden recurrent units (100 LSTM units each) and
an output softmax layer. Each training sequence was fur-
ther divided into sub-sequences of length 100. The RNNs

2 www.eecs.qmul.ac.uk/⇠sss31
3 AUDFPRINT was used to align the audio to the corresponding an-

notations: http://labrosa.ee.columbia.edu/matlab/audfprint/

Language Model
None LSTM RNN

Acoustic Model OR WAOR OR WAOR
DNN-CQT 57.0% 56.5% 62.8% 62.0%

DNN-DNN Feats 69.8% 69.1% 73.4% 73.0%
DNN-CW DNN Feats 72.9% 72.5% 75.5% 75.0%

Table 1. 4-fold cross-validation results on the MIREX
dataset for the major/minor prediction task. DNN-CQT
refers to CQT inputs to a DNN acoustic model. DNN-
DNN Feats refers to DNN feature inputs to the DNN
acoustic model. DNN-CW DNN Feats refers to DNN fea-
tures with a context window as input to the acoustic model.

were trained with stochastic gradient descent on individ-
ual sub-sequences, without any mini-batching. Unlike the
acoustic models, we observed that ADADELTA did not
perform very well for RNN training. Instead, we used an
initial learning rate of 0.001 that was linearly decreased
to 0 over 1000 training iterations. We also found that a
constant momentum rate of 0.9 helped training converge
faster and yielded better results on the test set. We used
early stopping and training was stopped if validation log-
likelihood did not increase after 20 epochs. We used gra-
dient clipping when the norm of the gradients was greater
than 50 to avoid gradient explosion in the early stages of
training.

6. RESULTS

In Table 1, we present 4-fold cross validation results on the
combined MIREX dataset at the major/minor chord level.
The metrics used for evaluation are the overlap ratio (OR)
and the weighted average overlap ratio (WAOR) which are
commonly used for evaluating chord recognition systems
(including MIREX). The test data is sampled every 10ms
similar to the MIREX evaluations. The outputs of the hy-
brid model were decoded with the proposed hashed beam
search algorithm. A grid search was performed over the
decoding parameters and the presented results correspond
to the parameters that were determined to be optimal over
the training set.

From Table 1, it is clear that the hybrid model improves
performance over the acoustic-only models. The results
show that the performance of the acoustic model is greatly
improved when the input features to the model are learnt by
a DNN as opposed to CQT inputs. The performance of the
acoustic model is further improved (3% absolute improve-
ment) when mean and variance pooling is performed over
a context window of DNN features. It is interesting to note
that the relative improvement in performance is highest for
the DNN-CQT and DNN-DNN Feats configurations. This
is due to the fact that the hybrid model is derived with the
explicit assumption that given a state zt, the acoustic frame
xt is conditionally independent of all state and acoustic
vectors occurring at all other times. Applying a context
window to the features violates this independence assump-
tion and therefore the relative improvement is diminished.
However, the improved performance of the acoustic model
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Figure 2. Effect of varying beam width on OR on MIREX
data. n = 2, k = 1

due to context windowing offsets this loss. Although for-
mal comparisons cannot be made, the accuracies achieved
with the hybrid model are similar to the best performing
model submitted to the 2014 MIREX evaluation 4 on the
Billboard dataset (OR = 75.57%).

To investigate the advantage of the proposed hashed beam
search algorithm, we plot the overlap ratio against the beam
width. Figure 2 illustrates that the proposed algorithm can
achieve marginally better decoding performance at a sig-
nificant reduction in beam size. As an example, the hashed
beam search yields an OR of 75.1% with a beam width of
5, while regular beam search yields 74.7% accuracy with a
beam width of 1000. The time taken to run the hash beam
search (w = 5) over the test set was 5 minutes, as com-
pared to the regular beam algorithm (w = 1000) which
took 17 hours to decode the test set. The algorithm’s abil-
ity to yield good performance at significantly smaller beam
widths indicates that it performs efficient pruning of simi-
lar paths, thus utilising the available beam width more ef-
ficiently. The run-times of the algorithm show that it can
be used for real-time applications without compromising
recognition accuracy.

In addition to the beam width, the hash beam search al-
gorithm allows the user to specify the similarity metric and
the number of solutions for each hash table entry. We in-
vestigate the effect of these parameters on the OR and plot
the results in Figure 3. We let the similarity metric be the
previous n frames and observe performance as n is linearly
increased for a fixed beam width of 25. From Figure 3 we
observe that the performance is quite robust to changes in
the number of past frames for small values of n. One pos-
sible explanation for the graph is that since the test data is
sampled at a frame rate of 10ms, all occurrences of chords
last for several frames. Therefore counting the previous n
frames, effectively leads to the same metric each time. We
experimented with using the previous n unique frames as
a metric but found that the results deteriorated quite dras-
tically as n was increased. This might reflect the limited

4 www.music-ir.org/mirex/wiki/2014:Audio Chord Estimation Results

Figure 3. Effect of varying hashed beam search parame-
ters fh, k on OR on MIREX dataset. w = 25.

memory of RNN language models and the issues caused
due to lack of explicit duration modelling. The blue line
in Figure 3 illustrates the effect of varying the number of
solutions per hash table entry. From this graph we see that
performance deteriorates significantly once the number of
entries per bin crosses a certain threshold (⇠ 5). This is
due to the fact that maintaining many solutions of the same
kind saturates the beam capacity with very similar solu-
tions, limiting the breadth of search.

7. CONCLUSION AND FUTURE WORK

We present a chord estimation system based on a hybrid
recurrent neural network and the results are competitive
with existing state-of-the-art approaches. We show that
DNNs are powerful acoustic models. By learning features,
they eliminate the need for complex feature engineering.
The hybrid RNN model allows us to superimpose an RNN
language model on the acoustic model predictions. Ad-
ditionally, language models can be trained on chord data
from the web without the corresponding audio. The re-
sults clearly indicate that the language model helps im-
prove model performance by modelling the temporal re-
lationships between output chord symbols and refining the
predictions of the acoustic model. The proposed variant of
the beam search algorithm significantly reduces memory
usage and run times, making the model suitable for real-
time applications.

In the future, we would like to conduct chord recog-
nition experiments on larger datasets. This is because the
modelling and generalisation capabilities of neural networks
improve with more available data for training. An impor-
tant issue that remains with respect to RNN language mod-
els is the problem of duration modelling. Although RNNs
are very good at modelling the transition probabilities be-
tween events, durations of each event are not modeled ex-
plicitly. For musical applications like chord recognition
and music transcription, accurate estimates for durations
of note occurrences can further help improve the effective-
ness of RNN based language models.
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