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ABSTRACT

We present a system that interprets the notated rhythm ob-
tained from optical music recognition (OMR). Our approach
represents the notes and rests in a system measure as the
vertices of a graph. We connect the graph by adding voice
edges and coincidence edges between pairs of vertices, while
the rhythmic interpretation follows simply from the con-
nected graph. The graph identification problem is cast as
an optimization where each potential edge is scored ac-
cording to its plausibility. We seek the optimally scor-
ing graph where the score is represented as a sum of edge
scores. Experiments were performed on about 60 score
pages showing that our system can handle difficult rhyth-
mic situations including multiple voices, voices that merge
and split, voices spanning two staves, and missing tuplets.

1. INTRODUCTION

Past decades have seen a number of efforts on the problem
of Optical Music Recognition (OMR)with overviews of the
history and current state of the art found at [2, 3, 8, 14].
OMR can be divided into two subproblems: identifying the
music symbols on the page and interpreting these symbols,
with most efforts devoted to the former problem [7,13,16].
However, the interpretation problem is also important for
generating meaningful symbolic representations. In this
paper, we focus on the rhythm interpretation of musical
symbols, which appears to be the most challenging inter-
pretation problem.

Many OMR systems [11] perform some sort of rhythm
interpretation in order to play back and verify the recog-
nized music symbols. When there are not enough notes
or too many notes to match the meter of the measure, the
OMR system often “flags” the measure to suggest that there
is something wrong, alerting the user to correct the mea-
sure. In this way, rhythm interpretation is used as a check-
ing tool for correcting recognized scores.

There are a few research efforts that correct recogni-
tion results automatically. Droettboom [6] proposed met-
ric correction as part of an OMR system. Using the fact
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Figure 1. Three system measures from Rachmaninoff Pi-
ano Concerto No.2 showing some of the difficulties in in-
terpreting rhythm. All three measures are in 4/4 time.

Figure 2. Two system measures from Rachmaninoff Pi-
ano Concerto No.2 showing some of the difficulties in in-
terpreting rhythm. Both are in 4/4 time.
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that rhythmically coincident notes are usually aligned ver-
tically, this work applies different corrections on inconsis-
tent notes. Church [5] proposed a rhythmic correction with
a probabilistic model that converts the rhythm of a suspi-
cious measure to the most similar measure in the piece.
Byrd [4] proposed improving OMR with multiple recog-
nizers and sequence alignment.

The approaches mentioned above work for simpler sit-
uations such as monophonic music or measures without
complex tuplets. However, some music scores, especially
those for piano, are filled with rhythmically challenging
situations such as missing tuplets or voices that come and
go within a measure. Simple approaches are likely to fail
on a significant proportion of these measures.

Our paper differs from other work we know by address-
ing the most challenging examples using complete infor-
mation (the system measure), instead of trying to correct
the misrecognized symbols. Our research questions are:
given perfect symbol recognition is the system able to un-
derstand rhythm as a human would? When there are multi-
ple voices interwoven in one measure, can the system sep-
arate the voices? When there are implicit symbols such
as omitted rests and missing tuplets, can the system still
interpret correctly?

Figures 1 and 2 show some challenging examples that
illustrate the problem we address. The left measure in Fig-
ure 1 shows an example using multiple voices. When mul-
tiple voices are present it is nearly impossible to interpret
rhythm without identifying these voices as such. In an ef-
fort to avoid overlapping symbols, some notes in the mea-
sure that ideally should align vertically do not. The mid-
dle measure in Figure 1 shows an example of missing tu-
plets (tuplets are not labeled). What is most unusual, and
would likely go unnoticed by anyone other than an OMR
researcher, is that these beamed groups would normally be
written with two beams rather than one, though the mean-
ing is still clear. In addition, the 9-tuplet is not explicitly
indicated with a numeral — a common notational conven-
tion.

The right measure in Figure 1 shows another example
of missing triplet for the 3 beamed eighth notes in the first
staff, as well as a quarter note plus an eighth note pair in the
second staff. A further complication is that this measure
is, in some sense, incomplete, as the voice in the second
staff jumps onto the first staff on the second quarter and
then jumps back on the third quarter. The left measure
in Figure 2 demonstrates an example of special beaming
of a sextuplet where the first eighth note is separate from
five beamed eighth notes. The right measure in Figure 2
demonstrates an example where all four beamed groups
are triplets while the voice jumps back and forth between
the two beamed groups.

The examples all seem innocent until one considers the
assumptions on rhythm notation that must underlie an in-
terpretation engine. One quickly comes to see that typical
in vivo notation contains a fair amount of “slang” that may
be readily understood by a person familiar with the idiom,
but is much harder for the machine. [9] has more demon-

strations of such ”slang” in music scores.
In this paper we present an algorithm that is generally

capable of correctly interpreting notation such as the ex-
amples we have discussed. In our presentation, Section 2
introduces our rhythm graph and optimization on the graph
score. In Section 3, we present our experiments on three
scores and discuss the results.

2. METHODS

2.1 Input

We first perform optical music recognition with our Ceres
[12] OMR system taking the score image as input. The
output is stored as a collection of labeled primitive sym-
bols such as solid note head, stem, beam, flag, and etc.,
along with their locations. The user deletes or adds prim-
itive symbols using an interactive interface. Editing sym-
bols at the primitive level allows us to keep useful infor-
mation such as stem direction and beaming as well as the
exact primitive locations which are important for rhythm
interpretation.

After this correction phase, we assemble the primitive
symbols into meaningful composite symbols (chords and
beamed groups). This step is done in a simple rule-based
method. Each note or rest is assigned to the staff measure
it belongs to.

2.2 Rhythm Graph

We form a graph of the rhythmically relevant symbols for
each system measure. The set of vertices of the graph,
which we denote as V , are the notes, rests, and bar lines
belonging to the system measure. All vertices are given
a nominal duration represented as a rational number. For
example, a dotted eighth would have nominal length 3/16,
while we give the bar lines duration 0. Sometimes the ac-
tual vertex duration can differ from the nominal length, as
with missing tuples. In these cases, we need to identify
which symbols are tuplet symbols in order to interpret the
rhythm correctly.

Vertices can be connected by either voice or coinci-
dence edges, as shown in Figure 3. Voice edges, which
are directed, are used for symbols whose position is under-
stood in relation to a “previous” symbol, as in virtually all
monophonic music. That is, the onset time of a symbol on
the “receiving” end of a voice edge is the “preceding” sym-
bol’s onset time plus duration. Coincidence edges link ver-
tices that share the same onset time, as indicated by their
common horizontal location. Using these edges we can in-
fer the onset time of any note or rest connected to a bar
line. We denote by E the complete collection of all possi-
ble edges.

We formulate the rhythm interpretation problem as con-
strained optimization. Given the set of vertices,V , and pos-
sible edges, E, we seek the subset of E, E⇤, and the label-
ing of V that maximizes

H =
X

e2E⇤

�(e) +
X

v2V

'(l(v)) (1)
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where function �(e) represents how plausible each edges
is according to the music rules, l labels vertex v as tuplet or
non-tuplet, and function '(l) penalizes labeling vertices as
tuplet so as to favor simple interpretations whenever pos-
sible. The subset E⇤ and labeling are constrained to con-
struct a consistent and connected graph.

2.3 Constructing edges

We construct the graph beginning with the left bar line
(which has an onset time of 0), by iteratively connecting
new vertices to the current graph with voice and coinci-
dence edges until all vertices form a single connected com-
ponent. More specifically, we connect the current vertex
with a voice edge to a previously visited vertex. This vertex
has to be either a bar line or a vertex in the same staff mea-
sure. (Piano staves are treated as one staff because voices
often move between left and right hand parts.) This new
voice edge defines a unique onset for the current vertex.
Then we add coincidence edges between the current ver-
tex and all past vertices so that both have nearly the same
horizontal position and have the same onset time. We may
also add coincidence edges between the incoming vertex
and a past vertex having a different onset time, leading to a
conflict that must be resolved, as discussed in Section 2.4.
Different combinations of edges give different onset times
to the vertices.

As an edge e is introduced to the graph we score it ac-
cording to its plausibility �(e). There are different kinds
of musical knowledge [15] we hope to model in comput-
ing these scores, as follows.

1. The left bar line has an onset time of 0. The right bar
line has an onset time of the measure’s meter. No
vertices can have onset times greater than the meter.

2. The onset times must be non-decreasing in the hor-
izontal positions of the symbols in the image. That
is, if vertex A lies to the left of vertex B it cannot
have an onset that is after that of vertex B.

3. A vertex has a unique onset time. Thus, if multiple
paths connect a vertex to the graph they must give
the same onset time.

4. Vertices connected by coincidence edges should have
the same approximate horizontal position in the im-
age. Vertices with the same horizontal image posi-
tions should should have the same onset time.

5. Vertices in a beamed group note are usually con-
nected by voice edges, while we penalize voices that
exit a beamed group before it is completed.

6. Vertices connected by a voice edge usually have the
same stem direction and tend to appear at similar
staff height.

The first two rules above are hard constraints that must
be followed. When they are violated our algorithm sim-
ply will not add the offending edge. The other rules can
be violated for different reasons. For example, symbols

having the same onset time may not align in the image be-
cause one is moved to avoid overlap with other symbols, or
because the image is skewed or rotated through the scan-
ning process. Such violations lead to penalties of the edge
scores.

2.4 Conflict Resolution by Reinterpretation

If we disregard the right bar line and construct a spanning
tree from the remaining vertices we are guaranteed that ev-
ery vertex can be reached through a unique path starting
from the left bar line, thus giving each vertex a unique on-
set time. While this approach has the compelling appeal
of simplicity, it would fail in any case where the nominal
note length is not the correct interpretation, as with miss-
ing tuplets. Instead, we identify such cases by allowing
multiple paths to a vertex, and thus multiple rhythmic in-
terpretations. When the result of these multiple paths gives
conflicting onset positions for a vertex we consider reinter-
preting some notes in terms of missing tuplets to resolve
the conflict. In such a case we treat the earlier onset time
as the correct one, while reinterpreting the path leading to
the later onset time. This is because the nominal length of
a tuplet note is usually greater than the true length. While
there are exceptions to this rule, as with duplets in triple
meter, we do not treat such cases in the current work.

As an example, consider the situation in Figure 3. Here
the first coincidence edge considered (dotted line in the 1st
graph) does not create any conflict since both paths give
the onset position of 1/4. However, the coincidence edge
for the quarter note on the top staff (dotted line in the 2nd
graph) gives the onset time of 1/2 while the voice edge
gives the onset time of 5/8, thereby generating a conflict.
Thus we must reinterpret the path giving the later onset
time of 5/8 to be consistent with the onset time of 1/2. In
this case the desired interpretation is that the three eighth
notes form an implicit triplet, and thus have note lengths
of 1/12 rather than 1/8 (bottom graph). Another example
of a conflict arises when a voice edge links to the right bar
line and attributes an onset time for the bar line other than
its true position (which is the meter viewed as a rational
number). In this case we must reinterpret the path leading
to the right bar line.

When reinterpreting we must consider the path that gen-
erates the onset position in conflict — but how far back-
ward should we go? The collection of reinterpretable ver-
tices could spill over into multiple voices and staff mea-
sures, thus generating an intractable collection of possibil-
ities to consider. Here we make some simplifying assump-
tions to keep the computation from becoming prohibitively
large. First of all, recall that we consider the staff mea-
sures of a system one at a time. After a staff measure is
completely analyzed and reduced to a single interpretation,
we do not consider future reinterpretations of the measure.
Thus reinterpretation is confined to the current staff mea-
sure (or two staves in the case of the piano). Furthermore
we do not allow the reinterpretation process to generate ad-
ditional inconsistencies. This rules out the reinterpretation
of any vertex connecting to a measure in a previously ana-
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lyzed staff measure. Even with these restrictions the com-
putation can still be significant, as we must simultaneously
consider the possibility of a number of different tuplet hy-
potheses, thus requiring an effort that is exponential in the
number of hypotheses.

One might contrast this approach with a purely top-
down model-based strategy that considers every possible
rhythmic labeling. Such a strategy would be our prefer-
ence if computationally feasible, and, in fact, was the ap-
proach we explored in [10]. The problem is that there are,
a priori, a large enough collection of possible labelings
so that, when coupled with unknown voicing, the compu-
tation does not always prove tractable. This is why we
uncover candidates for reinterpretation prompted by coin-
cidence edges. Thus the modeling of our algorithm lies
somewhere between top-down and bottom-up recognition.
It is model-based, yet it relies on the data itself to prompt
certain data interpretations. While not necessarily an argu-
ment in favor of our approach, this appears to be a central
part of the human strategy for rhythm understanding.

We consider several cases of reinterpretation:

1. A beamed group can be reinterpreted as a beamed
tuplet note of simple duration (1/2, 1/4, etc.), as in
the left measure of Figure 2.

2. Three consecutive vertices that add up to 3/8 could
be reinterpreted as missing triplet of total length 1/4,
as in the middle measure of Figure 2. This rule
can be generalized to include other kinds of triplets
(quarter note or sixteenth note) and to include tuplets
other than 3.

3. We can globally reinterpret all vertices along the voice
path, as in the right measure in Figure 2, meaning
that all note lengths are rescaled to create the desired
collective duration.

The score function '(l(v)) in Eqn (1) penalizes the com-
plexity of a reinterpretation, thus favoring simple interpre-
tations whenever possible.

2.5 Dynamic Programming for Optimization

During graph construction, each time we add a new vertex
into the graph we consider adding voice edges between the
new vertex and all vertices already in the graph. Thus, only
considering the voice edges, the number of possible graphs
with n vertices would be n!. Since a common system mea-
sure may have more than 50 vertices, it is computationally
infeasible to search the whole graph space. This situation
can be improved by dynamic programming: after any new
vertex has been added to the graph, if two different graphs
give identical onset times for each vertex we prune the one
with lower score.

The order in which the vertices are considered is im-
portant in producing a feasible search. One way would
be to visit all vertices in the system measure according to
their horizontal location on the image. The problem with
this approach is that the constraints imposed by the right

Figure 3. Constructing the rhythm graph of an example
measure. Voice (red) and Coincidence (Purple) edges are
automatically constructed to identify the onset time of ver-
tices (notes, rests and bar lines).
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bar line, which has a known onset position, do not come
into play until the very end of the graph construction. An
alternative first considers the vertices in left-right manner
from a single staff measure, then continuing one-by-one
with the other staff measures. Each time a staff measure
is completed we continue only with the best scoring single
graph. In this way, we will greatly reduce the number of
partial graphs we carry through the process.

Among all measures in our experiments the maximum
number of graph hypotheses we encounter during the DP
computation is usually less than 100, even in the system
measures with 50 to 60 vertices. The measures posing the
greatest computational challenge are those having multi-
ple voices, missing tuplets, and, at the same time, similar
rhythm between the voices. The left example measure in
Figure 4 shows such a case. It may seem easy for a per-
son to recognize that there are two voices in the first staff.
Here four quarter notes form one voice, and four pairs of
triplets, consisting of an eighth rest and two eighth notes,
form another voice. However, it’s not an easy task for a
computer. The second staff measure doesn’t provide much
information since it also has the similar missing tuplets
which are hard to distinguish from nominal rhythm until
one encounters the right bar line. Other measures in the
same system also don’t provide aligned symbols to anchor
the search. The number of graph hypotheses for this sys-
tem measure grows up to 2600 at the end of the measure.
This measure represents the maximum number of hypothe-
ses attained throughout our experiments. This is still easily
feasible computationally.

3. EXPERIMENTS

In the experiments, we have chosen three different scores
of varying degrees of rhythmic complexity for evaluation,
all taken from the IMSLP [1].

3.1 Rachmaninoff Piano Concerto No.2

The orchestra score of Rachmaninoff Piano Concerto No.
2 is a highly challenging example for our rhythm inter-
pretation algorithm. The score has 371 system measures,
with each system measure containing up to 15 staff mea-
sures. The piece covers different types of rhythmic dif-
ficulties such as polyphonic voices, missing tuplets, and
voices moving between staff measures. In addition some
pages of the score are rotated and skewed due to the scan-
ning process, creating difficulty detecting coincidence be-
tween notes.

We get 355 out of 371 (95.7%) system measures cor-
rectly. In the following paragraphs, we will discuss three
representative examples in which our system fails to find
the correct rhythm.

Failure case 1 In the left example in Figure 4 we fail
to interpret all the missing triplets. The result produced
by our system did not recognize the first and last triplet in
the first staff, instead treating those beamed eighth notes
as normal eighth notes. The system gives the left eighth
note in the beam the same onset time as the eighth note

rest, explaining it as coincidence with the eighth note rest
since they almost align vertically. In this case we found
that the correct interpretation was actually generated by
our system, but survives with a lower score. This type of
scenario, where the correct interpretation survives but does
not win, occurs a number of times in our experiments. In
this case, the reason is because we give a high penalty for
tuplet reinterpretation, while a give comparatively lower
penalty when allegedly coincident symbols are not per-
fectly aligned. Therefore, the state that has fewer tuplets
but worse alignment gets a higher score.

Failure case 2 The right example in figure 4 is another
example where our system does not produce the correct
rhythm. The difficulty in this measure is the voice that
moves between the treble and bass staves of the piano.
While we successfully recognized two missing sextuplets
in the treble staff, we failed to recognize that the quarter
note in treble staff and eighth note in the bass staff form
a triplet. In our result, they are interpreted as a normal
quarter note and a normal eighth note with the eighth note
aligned to the 3rd sixteenth through a coincidence edge.
This happens because we impose a penalty for interpreting
a missing tuplet, while the eighth note aligns reasonably
well with the third 16th note, providing a plausible expla-
nation. However, the isolated eighth note is the only note
that has the wrong onset time. This case also shows that
our algorithm is capable of recovering from local errors to
produce mostly correct results, even though not perfect.

Failure case 3 Our third incorrect case is shown in the
left of Figure 5. In the first staff of this example, the dot-
ted half note chord and first eighth note in the first beam
group both begin at the start of the measure. However,
we have a maximal horizontal distance between two notes
that have the same onset time, which serves the important
role of pruning graphs graphs that exceed this threshold —
usually this is the correct thing to do. In this particular
case these two notes exceeded the threshold, thus we lose
the correct interpretation. For such a case, we can always
make the threshold larger, but this weakens the power of
the alignment rule elsewhere. Of course, there will always
be special cases where our threshold is not large enough.
In the right measure in Figure 5, the eighth rest and whole
note “high” c in the first staff are very far away from the
half note in staff three due to the long grace note figure.
Presumably the grace note figure begins on the beat, so the
coincidence suggested by the score is correct, though this
peculiarity lies outside of the basic modeling assumptions
we have employed: here two notes at the same rhythmic
position are not intended to sound at the same time! We
have a few other examples of this general type of failure,
such as when we can’t compute horizontal distances ac-
curately due to image skew. Given the reasons above, we
decide to keep the threshold as strict as it is, because it
provides a significant help with keeping the computation
tractable.
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Figure 4. Examples for failure case 1 and failure case 2
from Rachmaninoff Piano Concerto No. 2. Both measures
are in 4/4 time.

Figure 5. Examples for failure case 3 from Rachmaninoff
Piano Concerto No.2. Both measures are in 4/4 time.

Figure 6. Two examples from Debussy’s 1st Arabesque.
Both measures are in 4/4 time.

3.2 Borodin String Quartet No.2, 3rd Movement

We also tested on the 3rd movement (Notturno) from Borodin’s
2nd String Quartet. This is a “medium” difficulty score
consisting of 4 staves for each system. The third movement
has 180 systems measures over 6 pages. 22 out of 180 sys-
tem measures contain triplets, and, while all of these are
explicitly notated with numerals in the score, we deliber-
ately didn’t include these in our rhythm interpretation pro-
cess. The system gets 100 percent correct rhythm on all of
these measures.

3.3 Debussy 1st Arabesque

Usually the more staves in a system, the more coincidence
edges between different staves, thus providing anchors for
reinterpretation when needed. Thus solo piano music can
be particularly challenging with only two staves. In mea-
sures that are monophonic or homophonic we can’t iden-
tify inconsistencies until we reach the end of the measure
as both nominal and tuplet hypotheses are consistent with
spacing. In order to demonstrate that our system is also
capable of handling these challenges, we experimented on
the first of the two Debussy Arabesques, containing 107
measures.

This piece has a variety of rhythmic difficulties. 73/107
(68%) of the system measures have at least one, and up to
six missing tuplets, while 17/107 measures contain voices
moving between the two staves. This latter category is par-
ticularly difficult because the measures are monophonic as
in Figure 6, and thus do not provide coincidence clues.
Therefore, our algorithm only sees conflicts at the end of
the measure and must reinterpret the entire measure at once.
However, our results show that we are generally capable of
handling such situations. There’s only one measure that
we don’t get exactly correct as shown in the right of Figure
6. In this measure, there are four missing beamed group
triplets. In our best scoring solution, we found the first and
last triplets but are missing the middle two. The correct in-
terpretation also survives into the final list but with a lower
score.

4. CONCLUSION

We have presented a graph-based rhythm interpretation sys-
tem. Experiments show that given the perfect symbol recog-
nition, our system is generally capable of interpreting diffi-
cult notation involving separating multiple voices and iden-
tifying implicit symbols such as missing tuplets. It also
shows that it’s a difficult and interesting problem and worth
further exploration. One possibility will be using trained
penalty parameters for a particular score. A rare notation
or rhythmic pattern could appear repeatedly in one score,
thus we hope an adaptive model would improve the result.
Also, since there are always exceptions in all music-related
questions, human interactive methods are another interest-
ing direction to explore.
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