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ABSTRACT

In this paper, we propose a novel approach to harmonic-
percussive sound separation (HPSS) using Non-negative
Matrix Factorization (NMF) with sparsity and harmonicity
constraints. Conventional HPSS methods have focused on
temporal continuity of harmonic components and spectral
continuity of percussive components. However, it may not
be appropriate to use them to separate time-varying har-
monic signals such as vocals, vibratos, and glissandos, as
they lack in temporal continuity. Based on the observa-
tion that the spectral distributions of harmonic and percus-
sive signals differ – i.e., harmonic components have har-
monic and sparse structure while percussive components
are broadband – we propose an algorithm that successfully
separates the rapidly time-varying harmonic signals from
the percussive ones by imposing different constraints on
the two groups of spectral bases. Experiments with real
recordings as well as synthesized sounds show that the pro-
posed method outperforms the conventional methods.

1. INTRODUCTION

Recently, musical signal processing has received a great
deal of attention especially with the rapid growth of digi-
tal music sales. Automatic musical feature extraction and
analysis for a large amount of digital music data has been
enabled with the support of computational power. The ma-
jor purposes of such tasks include extracting musical infor-
mation such as melody extraction, chord estimation, onset
detection, and tempo estimation.

Because most music signals often consist of both har-
monic and percussive signals, the extraction of tonal at-
tributes is often severely degraded by the presence of per-
cussive interference. On the other hand, when we analyze
rhythmic attributes such as tempo estimation, the harmonic
signals act as interference that may prevent accurate anal-
ysis. Consequently, the separation of harmonic and per-
cussive components in music signals will function as an
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important pre-processing step that allows efficient and pre-
cise analysis.

For these reasons, many researchers have focused on
investigating HPSS using various approaches. Uhle et
al. performed singular value decomposition (SVD) fol-
lowed by independent component analysis (ICA) to sep-
arate drum sounds from the mixture [1]. Gillet et al. pre-
sented a drum-transcription algorithm based on band-wise
decomposition using sub-band analysis [2].

Other researchers have employed matrix factoriza-
tion techniques such as non-negative matric factoriza-
tion (NMF). Helen et al. proposed a two-stage pro-
cess composed of a matrix-factorization step and a basis-
classification step [3]. Kim et al. employed the matrix co-
factorization technique, where spectrograms of the mix-
ture sound and drum-only sound are jointly decomposed
[4]. NMF with smoothness and sparseness constraints
was utilized by Canadas-Quesada et al. [5]. The algo-
rithm was developed based on assumptions regarding the
anisotropic characteristics of the harmonic and percussive
components; harmonic components have temporal con-
tinuity and spectral sparsity, whereas percussive compo-
nents have spectral continuity and temporal sparsity.

Most HPSS algorithms have employed the same as-
sumption. Ono et al. presented a simple technique to rep-
resent a mixture sound spectrogram as a sum of harmonic
and percussive spectrograms based on the Euclidean dis-
tance [6]. Their technique aims to minimize the tempo-
ral dynamics of harmonic components and the spectral dy-
namics of percussive components. They further extended
their work to use an alternative cost function based on
the Kullback-Leibler (KL) divergence [7]. More recently,
FitzGerald presented a median filtering-based algorithm
[8], where a median filter is applied to the spectrogram in
a row-wise and column-wise manner for the extraction of
harmonic and percussive sounds, respectively. Gkiokas et
al. also proposed a non-linear filter-based HPSS algorithm
[9].

However, the assumption regarding the temporal con-
tinuity, which is considered to be crucial for conven-
tional harmonic-percussive studies, does not account for
the rapidly time-varying harmonic signals often present in
vocal sounds and musical expressions such as slides, vi-
bratos, or glissandos. This is because their spectrograms
often fluctuate over short periods of time. Thus, it may de-
grade the performance of the algorithms, particularly when
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loud vocal components or such musical expressions are
mixed.

In this paper, we propose a HPSS algorithm that is clas-
sified as a spectrogram decomposition-based method. We
consider the spectrum of harmonic components to have a
harmonic and sparse structure in the frequency domain,
whereas the spectrum of percussive components to have
an unsparse structure. To realize the successful separation
of harmonic/percussive sounds, we apply constraints that
impose a particular structure of the spectral bases. The
novelty of the proposed method resides in the harmonic-
ity constraint, which is an extension of the sparsity con-
straint presented in previous works [10]. The constraint is
closely related to the Dirichlet prior, which is frequently
used in probabilistic analysis. Because the proposed al-
gorithm does not assume temporal continuity for the sep-
aration of harmonic signals, we can successfully separate
harmonic signals from the mixture sound, even when there
are significant fluctuations over time.

The rest of this paper is organized as follows. Section
2 explains in detail how the proposed method works. In
Section 3, we present experimental results, and in Section
4, we conclude the paper.

2. PROPOSED METHOD

In this section, we present a detailed explanation of the
proposed HPSS method. The proposed algorithm uses the
spectrogram-decomposition technique, NMF, with the har-
monicity and sparsity constraints based on the Dirichlet
prior. For the efficient description of the proposed method,
we first introduce the conventional NMF. Then, the algo-
rithm description for the proposed method is presented. Fi-
nally, the theoretical relations of the proposed method to
the Dirichlet prior are described.

2.1 Conventional NMF

Lee and Seung introduced the multiplicative update rule of
NMF for KL divergence [11]. As we iteratively update the
parameters, we can represent a non-negative matrix, which
may correspond to a magnitude spectrogram, as a multi-
plication of two non-negative matrices that may contain
spectral bases and temporal bases. The update rule can be
represented as:
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where F and F̃ denote the M ⇥N magnitude spectrogram
of an audio mixture, and its estimation, respectively, W
and H denote the M ⇥K matrix of the spectral bases and
the K ⇥N matrix of their activations.

2.2 Formulation of Harmonic-Percussive Separation

We present a modified NMF algorithm to impose the char-
acteristics of harmonic/percussive sounds. The update rule
is separately represented for the harmonic source basis and
percussive source basis as follows:
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where �H and �P denote a set of harmonic bases and per-
cussive bases, respectively, fft (·) and ifft (·) denote the
functions of the fast Fourier transform (FFT) and the in-
verse FFT (IFFT), respectively, wk denotes the kth col-
umn of W, �H

H denotes the harmonicity weight parameter
for the harmonic signal, and �H

S and �P
S denote the sparsity

weight parameters for harmonic and percussive signals, re-
spectively. Note that Eqns (3) and (4) are identical to Eqns
(1) and (2), respectively. Eqns (5)-(7) contribute to shaping
the spectral bases as desired as the iteration proceeds.

Mixing weights that have values between 0 and 1 rep-
resent the importance of each constraint imposition, and
indicate the degree to which we need to impose the charac-
teristic. To enable the harmonic bases to have a harmonic
and sparse structure while preserving the original figures
of spectral bases, �H

H and �H
S are set to have small positive

numbers, as the effect of the constraint is accumulated over
the iteration.

The exponents p, q, and r have to be determined consid-
ering the range of each parameter, 0  r  1  p, q. Here,
p and q respectively reflect the degree of harmonicity and
sparsity of the destination, and they have to be controlled
considering the spectral characteristics of the original har-
monic sources. Likewise, r reflects the degree of “unspar-
sity” of the percussive sources.

Among the update equations shown above, the function
of the conventional NMF update equations in Eqns (3) and
(4) is to minimize the error between F and its estimation
F̃. On the other hand, the remainders of the equations
aim to shape the spectral bases. The sparsity constraint
in Eqn (7) has been similarly adopted for the matrix de-
composition [10], and it is based on the fact that the square
operation increases the differences among the vector com-
ponents. If the square root operation is used instead, as
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in the percussive case of Eqn (7), unsparsity can be im-
posed to the basis. Similarly, we can extend this concept
to the harmonicity. The second term in Eqn (5) denotes
the harmonics-emphasized basis, which is due to the fact
that the spectrum of the spectrum is sparse. To prevent ele-
ments from being negative, the max (·, ·) operation in Eqn
(6) has to be jointly involved.

The harmonic and percussive sounds are reconstructed
using the corresponding bases as follows:

F(Harmonic) =
X

k2�H

wkhk (8)

F(Percussive) =
X

k2�P

wkhk (9)

where hk denotes the kth row of H.

2.3 Relation to Dirichlet Prior

The proposed update equations can be intuitively compre-
hended. However, the equations are based on a firm theo-
retical background, not heuristically induced. In this sub-
section, we employ Dirichlet prior from the probability
theory, and investigate its relations to the proposed method.

Priors were primarily adopted for the Bayesian proba-
bility theory, including the probabilistic latent component
analysis (PLCA) or probabilistic latent semantic analysis
(PLSA). Such spectrogram decomposition techniques of-
ten regard spectrogram components as histogram elements
of multinomial distributions. Because the Dirichlet distri-
bution is a conjugate prior of a multinomial distribution,
it can be adopted as a prior knowledge of a multinomial
distribution. By adopting the prior, we can modify our
goal to be the maximizing posterior from the maximizing
likelihood. For this reason, the Dirichlet prior has been
adopted for the matrix factorization in the previous works
[10], [12]. Our method employs one of the extensions of
the Dirichlet prior for harmonicity imposition.

Because PLCA is a special case of NMF, where its
cost function is KL divergence [13], we can generalize the
Dirichlet prior of the PLCA [12] by applying it to the NMF
algorithm as follows:
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where A and B denote the matrices of hyper parameters
with respect to H and W, respectively, and �1 and �2 de-
note the mixing weights. In our research, we focus only on
the spectral bases, and thus Eqn (10) is discarded. As can
be observed, the proposed update equations, Eqns (3)-(7),

have the same form as Eqn (11), and the way in which we
shape the spectral bases depends on the form of B matrix.

Frequency-domain sparsity imposition can be easily
achieved by setting the hyper parameter B as [10]

bk = (wk)u (12)

where bk denotes the kth column of B, and u denotes an
exponent that controls the degree of sparsity of bk.

On the other hand, harmonicity imposition can be
achieved when the hyper parameter is represented as

bk = ifft ({fft (wk)}v) (13)

where v denotes the exponent that controls the degree of
harmonicity of bk. This is because a periodic signal can
be represented as a sum of sinusoids, and the spectrum
of the periodic signal is sparse. Conversely, if a spec-
trum is sparse, we can assume that the original signal has
a strongly periodic characteristic. Thus, we aim to make
the spectrum of the spectrum to be sparse in order to shape
a signal such that it has a harmonic structure. Note that in
order to prevent destructive interference caused by phase
distortion, we have to manipulate only the magnitudes
within the IFFT function, preserving the original phases
of fft (wk).

3. PERFORMANCE EVALUATION

3.1 Sample Problem

In this section, we apply the proposed method and the con-
ventional methods to simple sample examples, which is
suitable for showing the novelty and validity of the pro-
posed method. Spectrograms of synthesized sounds that
consist of horizontal and vertical lines are presented in
Figure 1(a) and Figure 2(a). Figure 1(a) models the case
where a pitched harmonic sound is sustained for a certain
period. The sounds of harmonic instruments such as gui-
tars, pianos, flutes, and violins fall within this scenario.
On the other hand, Figure 2(a) illustrates the case where
a harmonic signal alters its frequency over time. In this
case, vibratos, glissandos, and vocal signals correspond to
the harmonic components. We compare the performance
of the proposed method to the separation results obtained
using three conventional methods: Ono et al.’s Euclidean
distance-based method [6], Ono et al.’s KL divergence-
based method [7], and FitzGerald’s method [8].

As shown in Figure 1(b), both the conventional methods
and the proposed method are able to successfully separate
the sounds. This is because the horizontal lines in this ex-
ample have horizontally continuous characteristics, which
are assumed by the conventional methods to be present.
However, when the harmonic sound vibrates and the hor-
izontal lines fluctuate, as shown in Figure 2(a), conven-
tional methods cannot distinguish the horizontal lines from
vertical lines. As we can see in Figure 2(b), the estimated
percussive components of conventional methods contain
harmonic partials, and only the proposed method can suc-
cessfully separate them. Thus, we can claim that the pro-
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(b) Separation results of Ono’s Euclidean distance-based method,
Ono’s KL divergence-based method, FitzGerald’s method, and the
proposed method (from top to bottom)

Figure 1. Sample example of separating horizontal lines
and vertical lines.

posed method is not affected by variations in the pitch be-
cause it relies on the harmonic structure of the vertical axis,
and not the degree of horizontal transition.

3.2 Qualitative Analysis

We evaluated the performance of the proposed method us-
ing a real recording example. Figure 3 shows a log-scale
plot of the spectrogram of an excerpt from “Billie Jean,”
by Michael Jackson. The signal was sampled at 22,050 Hz,
and the frame size and overlap size were set to 1,024 and
512, respectively. We can observe from the spectrogram
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(b) Separation results of Ono’s Euclidean distance-based method,
Ono’s KL divergence-based method, FitzGerald’s method, and the
proposed method (from top to bottom)

Figure 2. Sample example of separating fluctuating hori-
zontal lines and vertical lines.

that the excerpt contains both harmonic and percussive
components. The harmonic components can be seen as
horizontally connected lines, whereas the percussive com-
ponents are seen as vertical lines as in the sample exam-
ples.

Figure 4(a) and (b) show the separation results of the
harmonic sound (up) and percussive sound (down), which
were obtained using Ono et al.’s Euclidean distance-based
method and KL divergence-based method, respectively.
Here, we set the parameters to the values recommended in
the references. We observe that the estimated percussive
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Figure 3. Spectrogram of a real audio recording example
(“Billie Jean” by Michael Jackson).

components still contain harmonic components that may
correspond to the vocal components. This is because Ono
et al.’s algorithms aim to minimize the temporal transition
of the harmonic spectrogram. However, vocal components
in the original spectrogram do not match well with the un-
derlying assumption.

Figure 4(c) shows the result of FitzGerald’s method
with a median filter length of 17 and when the exponent
for the Wiener filter-based soft mask is two, as recom-
mended by FitzGerald [8]. We also observe that the sep-
arated percussive components still contain harmonic com-
ponents, as in the previous case. This is because of the use
of a one-dimensional median filter, which assumes that the
harmonic components are sustained for several periods.

Figure 4(d) shows the performance of the proposed
method. We observe that the harmonic and percussive
components are clearly separated, and the percussive com-
ponents do not have any vocal components in these results.
This is because unlike conventional methods, the proposed
algorithm does not rely on the horizontal continuity prin-
ciple. Rather, the proposed algorithm tries to account for
the harmonic components using the harmonic and sparse
spectral bases.

3.3 Quantitative Analysis

We performed a quantitative analysis to verify the va-
lidity of the proposed algorithm. First, we compiled
a dataset that consists of 10 audio samples, which is
a subset of the MASS database [14], but two sets of
data, namely tamy-que pena tanto faz 6-19 and tamy-
que pena tanto faz 46-57, were excluded in this exper-
iment because they lack percussive signals. Then, we
obtained a spectrogram for each audio sample with the
frame size and hop size set to 2,048 samples and 1,024
samples, respectively. Note that the sampling rate of
the songs in the MASS dataset is 44,100 Hz. Fi-
nally, we measured the signal-to-distortion ratio (SDR),
signal-to-interference ratio (SIR), and signal-to-artifact
ratio (SAR) using the BSS EVAL toolbox (http://bass-
db.gforce.inria.fr /bss eval/) supported by [15]. Table 1
shows the parameter values of the proposed method used in
this experiment. The parameters of the conventional meth-
ods are set to the recommended values, as in the previous
experiment.

The evaluation results are summarized in Figure 5. We
can see that the proposed method guarantees a better av-
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(c) FitzGerald’s method
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Figure 4. Qualitative performance comparison of conven-
tional and proposed methods.
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