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ABSTRACT

In this paper, a template adaptive drum transcription algo-
rithm using partially fixed Non-negative Matrix Factoriza-
tion (NMF) is presented. The proposed method detects per-
cussive events in complex mixtures of music with a minimal
training set. The algorithm decomposes the music signal
into two dictionaries: a percussive dictionary initialized
with pre-defined drum templates and a harmonic dictionary
initialized with undefined entries. The harmonic dictionary
is adapted to the non-percussive music content in a standard
NMF procedure. The percussive dictionary is adapted to
each individual signal in an iterative scheme: it is fixed
during the decomposition process, and is updated based on
the result of the previous convergence. Two template adap-
tation methods are proposed to provide more flexibility and
robustness in the case of unknown data. The performance
of the proposed system has been evaluated and compared
to state of the art systems. The results show that template
adaptation improves the transcription performance, and the
detection accuracy is in the same range as more complex
systems.

1. INTRODUCTION

Being one of the most intensively researched areas in Music
Information Retrieval (MIR), automatic music transcrip-
tion is often considered the core technology that would
enable high-level representations of music signals with the
potential of improving virtually any MIR system. A com-
plete transcription system comprises many sub-tasks such
as multi-pitch detection, onset detection, instrument recog-
nition, and rhythm extraction [2]. While the main focus
is mostly on pitched instruments, a considerable amount
of publications deal with the transcription of percussive
sounds in mixtures of tonal and percussive instruments.
The drum track in popular music conveys information about
tempo, rhythm, style, and possibly the structure of a song.
A drum transcription system enables applications in ac-
tive listening [27], music education, and interactive music
performance.
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This study explores the application of the popular tran-
scription method NMF for drum transcription in polyphonic
music. A standard NMF approach for music transcription
decomposes a signal into a dictionary matrix, which con-
sists of multiple pre-defined templates, and an activation
matrix, which contains the activity of the corresponding
templates. In this paper, we propose to transcribe drum
events using a signal-adaptive method based on NMF.

The paper is structured as follows: Section 2 provides
an overview of the research in this area. In Section 3 we
present our approach; evaluation results are being presented
and discussed in Section 4. Section 5 provides a summary,
conclusion, and directions of future work.

2. RELATED WORK

Drum transcription is a task that requires instrument iden-
tification and onset detection for percussive sounds. To
transcribe signals containing only drum sounds, standard
approaches with a feature extractor and a subsequent clas-
sifier are able to produce results with high accuracy [11].
For most use cases, however, a drum transcription system
is expected to work on mixtures of percussive and har-
monic sound sources. Gillet and Richard propose to cat-
egorize automatic drum transcription systems into three
categories:(i) segment and classify [4, 7, 22], for which
the audio signal is segmented into a series of events us-
ing onset detection, and each event is classified based the
extracted temporal or spectral features, (ii) separate and de-
tect [1,6,15,17], which assumes music to be a superposition
of different sound sources; by decomposing the signal into
source templates with corresponding activation functions,
the content can be transcribed by analyzing the activities of
each template, and (iii) match and adapt [28, 29], identify-
ing the drum events using a template matching method in
which the templates are searched for the closest match and
adapted in an iterative process.

Methods extended from these three types of approaches
have been presented as well. Paulus and Klapuri proposed
to use Hidden Markov Models (HMM) for drum transcrip-
tion [16]. This method models temporal connections be-
tween drum events and detect the drum based on the prob-
abilistic model. However, the method needs to train on
multiple drum sequences, thus, a large dataset is needed to
obtain a generic model. Another recent approach is to use
bar information to classify the audio signal into different
predefined drum patterns [23]. This approach requires addi-
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tional information of the bar locations and a large dictionary,
which can be impractical in some use cases.

Among the above mentioned methods, the second type
of approaches (separate and detect), frequently using NMF-
related methods, has the advantage of joint estimation of
multiple instruments and easy interpretation of the results.
However, when NMF is applied to the task of drum tran-
scription, the following challenges have to be faced:

First, the number of sound sources and notes within a
music recording is usually unknown. To optimally decom-
pose a signal, this number is necessary for determining the
rank r of the dictionary. This problem would be less severe
when the sound sources of the target signal are given [14].
However, in most cases, this prior information is difficult to
acquire. One solution is to build a dictionary that contains
more source templates than the target signal. Benetos et
al. used a probabilistic extension of NMF (Probabilistic
Latent Component Analysis, PLCA) to jointly transcribe
pitched and unpitched sounds in polyphonic music with a
relatively large pre-trained dictionary [3]. Although this
method can provide harmonic and percussive contents of
the music simultaneously, its robustness against unknown
sources still needs to be evaluated.

Second, without any prior knowledge, it can be hard to
identify the corresponding instrument of every template in
the dictionary matrix [26]. This problem becomes more
severe when the rank is selected too high or too low. Helen
and Virtanen trained an SVM to separate drum templates
from harmonic templates; the rank number was derived
empirically during the factorization process [10]. The iden-
tified drum templates and their corresponding activation
could later be used to reconstruct the drum signal, resulting
in a system for drum source separation. Their approach
requires a significant amount of training data for the clas-
sifier and, more importantly, the results can be expected
to be very susceptible to choice of rank. Yoo et al. pro-
posed a co-factorization algorithm [26] to simultaneously
factorize a drum track and a polyphonic signal. They used
the dictionary matrix from the drum track to identify the
drum templates in the polyphonic signal. This approach
ensures that the drum templates in both dictionary matrices
are estimated only from the drum track, resulting in proper
isolation of the harmonic templates from the drum tem-
plates. Since their system aims at drum separation, they can
work at higher ranks. For drum transcription, however, this
approach is not directly applicable because the correspond-
ing instrument of the templates in the dictionary matrix is
unknown.

Third, a suitable penalty term or sparsity constraint for
detecting percussive instruments still needs to be investi-
gated. In general, these constraints are the additional terms
in the NMF cost function that will facilitate the different
properties (e.g., the sparseness) in the resulting activation
matrix. Virtanen proposed to use constraints for temporal
continuity and sparseness [24]. He reported that by using
the temporal continuity criterion, the detection accuracy
and SNR of the pitched sounds can be improved in the
source separation task, whereas no significant improvement
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Figure 1. Flowchart of the drum transcription system

is shown with the sparseness constraint.
Another issue is the adaptability of the extracted tem-

plates. When using supervised NMF, the algorithm loses
its adaptability and might fail when the target signal is very
different from the pre-trained dictionary. Dittmar and Gart-
ner proposed to use semi-adaptive bases during the NMF
decomposition process [5]. However, their results indicate
that the semi-adaptive process did not improve the perfor-
mance of the transcription accuracy compared to fixed bases.
Furthermore, no results were reported for the transcription
performance in polyphonic mixtures.

3. METHOD

3.1 Implementation

Figure 1 shows the flow chart of the implemented system.
The STFT of the signals will be calculated using a Hann
window with a window length and a hop size of 2048 and
512, respectively, and the sample rate is 44.1 kHz. The
resulting magnitude spectrogram is used as the input rep-
resentation. A pre-trained dictionary matrix WD will be
constructed from the training set, which consists of isolated
drum sounds. Next, the initial drum dictionary will be used
in the partially fixed NMF (PFNMF) process and updated
by the selected template adaptation methods described in
Section 3.3. Finally, the activation matrix HD is processed
to determine the onset positions and their corresponding
classes.

The initial drum dictionary matrix WD is generated from
a subset of the ENST dataset, which contains audio tracks
of 5 to 6 single hits for each drum, performed by three
drummers. For every drum class, one track per drummer is
collected as training data. The onset position of these single
hits was determined using the annotated ground truth. The
template spectrum is a median spectrum of all individual
events of one drum class in the training set. The templates
are extracted for the three classes: Hi-Hat (HH), Bass Drum
(BD) and Snare Drum (SD).

High values in the activation matrix HD indicate the
presence of a drum event. More specifically, the activity
difference of each row of the activation matrix could be
considered as the onset novelty function of each individual
drum. We use a median filter as a standard approach to
create a signal-adaptive threshold for peak picking [13]. In
this paper, the window length and the offset coefficient � of
the median adaptive threshold are set to be 0.1 s and 0.12 for
every track. The Matlab implementation of the presented
system is available online. 1

1 https://github.com/cwu307/NmfDrumToolbox
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Figure 2. Illustration of the factorization process. W :
dictionary matrix, H: activation matrix; Subscript D: drum,
subscript H: harmonic components. A is the weighting
matrix.

3.2 Algorithm Description

The basic concept of NMF can be expressed as V ⇡WH
with non-negativity constraints, in which V is a m ⇥ n
matrix, W is a m⇥ r dictionary matrix, and H is a r ⇥ n
activation matrix, with r being the rank of the NMF decom-
position. In most audio applications, V is the spectrogram
with m frequency bins and n frames, W contains the mag-
nitude spectra of the salient components, and H indicates
the activation of these components with respect to time [20].
The matrices W and H are estimated through an iterative
process that minimizes a distance measure between the
target spectrogram V and its approximation [12].

In this paper, we propose a signal adaptive method to
transcribe drum events in polyphonic signals. The idea of
using NMF with prior knowledge of the target source within
the mixture has been applied to source separation tasks
[21] and multipitch analysis [18]. The method described
here is based on similar ideas but with different emphasis:
(i) we focus on a real world scenario in which users only
have limited amount of training samples that are slightly
different from the target source, (ii) we propose to use a
small dictionary matrix which is both efficient and easily
interpretable, and (iii) the proposed method is able to adapt
to different content in the polyphonic mixtures.

PFNMF [25] is a method inspired by [26] for drum tran-
scription task. Figure 2 visualizes the concept: the matrices
W and H are split into the matrices WD and WH, and HD

and HH, respectively. Instead of using co-factorization, the
algorithm initializes the matrix WD with drum templates
and does not modify it during the factorization process. The
matrices WH, HH, and HD are initialized randomly. The
rank rD of WD and HD depends on the number of tem-
plates (i.e., instruments) provided, and the rank rH can be
arbitrarily chosen. The total rank r = rD + rH. A is a
r ⇥ r diagonal weighting matrix, which contains weighting
coefficients for every template to balance the drum and har-
monic dictionaries in the NMF cost function (as discussed
in Section 4.3.1). In our experiment, the coefficients are
set to be ↵ = (rD + rH)/rD for each drum template and
� = rH/(rD + rH) for each harmonic template. This set-
ting is to increase the weighting of drum templates and
slightly decrease the weighting of harmonic templates as
rH becomes larger. When rH = 0, the algorithm reduces to
the original NMF.

The distance measure used is KL-divergence, in which
DKL(x | y) = x · log (x/y) + (y � x). The NMF cost
function as shown in Eq. (1) is minimized by applying

gradient decent and multiplicative update rules.

J = DKL(V | ↵WDHD + �WHHH) (1)

The matrices WH, HH, and HD will be updated accord-
ing to Eqs. (2)–(4):

HD  HD
WT

D (V/(↵WDHD + �WHHH))

WT
D

(2)

WH  WH
(V/(↵WDHD + �WHHH))HT

H

HT
H

(3)

HH  HH
WT

H (V/(↵WDHD + �WHHH))

WT
H

(4)

To summarize, the presented method before template
adaptation consists of the following steps:

1. Construct a m⇥ rD dictionary matrix WD, with rD

being the number of drum components to be detected.
2. Given a pre-defined rank rH, initialize a m ⇥ rH

matrix WH, a rD⇥n matrix HD and a rH⇥n matrix
HH.

3. Normalize WD and WH.
4. Update HD, WH, and HH using Eqs. (2)–(4).
5. Calculate the cost of the current iteration using Eq. (1).
6. Repeat step 3 to step 5 until convergence.

The time positions of the drum events can then be extracted
by applying a simple onset detection on the rows of matrix
HD.

3.3 Template Adaptation

Previous approaches to include template adaptation in drum
transcription process can be found in [5, 29]. These ap-
proaches usually start with seed templates and gradually
adapt them to the optimal templates. In this paper, we
propose two methods for template adaptation with PFNMF.
Both methods have the same criterion to stop iterating when
the error between two consecutive iterations changes by less
than 0.1% or the number of iterations exceeds 20. How-
ever, the adaptation process typically converges after 5–10
iterations.

3.3.1 Method 1: Complementary Update

In the first method (referred to as AM1), the drum dictio-
nary WD is updated based on the cross-correlation between
the activations HH and of each individual drum in HD.
PFNMF starts by randomly initializing a WH with rank rH.
Although WH tends to adapt to the harmonic content, it may
still contain entries that belong to percussive instruments
due to a mismatch between the initialized drum templates
and the target sources. This will result in cross-talk (si-
multaneous activation) between HH and HD and generate
a less pronounced activation. However, these harmonic
templates may also provide complementary information to
the original drum templates. To identify these entries, the
normalized cross-correlation between HH and HD for each
individual drum is computed using Eq. (5)

⇢x,y =

Pn
j=1 x(j) · y(j)

kxk2 · kyk2 , (5)
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where x and y represent different activation vectors, and n
is the number of samples in the activation vectors. A thresh-
old ⇢thres is defined for identification of related entries, and
the drum template WD can be updated using Eq. (6), where
W (i)

H (i = 1, ..., S) are the entries with their corresponding
⇢x,y higher than ⇢thres, and S is the number of the selected
entries. Since a low ⇢thres can introduce too much adapta-
tion and vice versa, a ⇢thres = 0.5 is chosen heuristically.
The amount of adaptation also depends on the coefficient
� = 1

2k , which decreases as iteration number k increases.

W 0
D = (1� �)WD + �

1

S

S
X

i=1

⇣

⇢(i)W (i)
H

⌘

(6)

3.3.2 Method 2: Alternate Update

In the second method (referred to as AM2), the drum tem-
plate WD is adapted by alternatively fixing WD and HD

during the decomposition process. The adaptation process
starts by fixing WD, and PFNMF will try to fit the best
activation HD to approximate the drum part in the music.
Once HD is determined, a new iteration of PFNMF can be
started by fixing HD and allow WD, WH and HH to update.
This constraint will guide the algorithm to fit better drum
templates based on the detected activation HD. The update
rule for WD is shown in Eq. (7).

WD  WD
(V/(↵WDHD + �WHHH))HT

D

HT
D

(7)

4. EVALUATION

4.1 Dataset Description

The experiments have been conducted on two different
datasets. The first one is the minus one subset from the
ENST drum dataset [8]. This dataset consists of recordings
from three different drummers performing on their own
drum kits. The set for each drummer contains individual
hits, short phrases of drum beats, drum solos, and short ex-
cerpts played with accompaniments. The minus one subset
has 64 tracks of polyphonic music, and the sampling rate
of every track is 44.1 kHz. Each track in this subset has
a length of approximately 70 s with varying style. More
specifically, the subset contains various drum playing tech-
niques such as ghost notes, flam, and drag; these techniques
are considered difficult to identify with existing drum tran-
scription systems [9]. The accompaniments are mixed with
their corresponding drum tracks using a scaling factor of
1/3 and 2/3 in order to reproduce the evaluation settings as
used in [16].

The second dataset, used for cross-dataset validation, is
IDMT-SMT-Drums [5]. This dataset consists of 95 drum
loop recordings from three drum kits (RealDrum, Wave-
Drum and TechnoDrum). The sampling rate of every track
is 44.1 kHz, and the total duration of the dataset is approxi-
mately two hours. This dataset also contains isolated drum
hits for training. However, in our experiments, the isolated
sounds are not used.

4.2 Evaluation Procedure

We evaluate the proposed system for both monophonic
(drum only) and polyphonic mixtures. The same set of
audio tracks is used with and without accompaniments. A
three-fold cross-validation is applied to the evaluation pro-
cess. Single drum hits collected from two drummers are
used to train the system, and complete mixtures from the
third drummer are used to test the system. The process re-
peats three times to test every drummer in the dataset. This
process is the same as described in [16], and the purpose
is to prevent the system from seeing the test data. Note
that the training data used in the system are single drum
hits, and the number of onsets is significantly fewer than
the test data. Typically, the training data only consists of 10
to 12 single hits for each drum class. This is similar to the
real-world use case, where the users may have access only
to a limited number of training samples.

The evaluation metrics follow the standard calculation
of the precision (P), recall (R), and F-measure (F). To be
consistent with [9], an onset is considered to be a match
with the ground truth if the time deviation in between is less
or equal to 50 ms. It should be noted that some authors use
more restrictive settings, compare e.g. the 30 ms as used
in [16].

4.3 Evaluation Results

4.3.1 Rank Independence

In an initial test to determine the rank rH of the PFNMF,
rH = 5, 10, 20, 40, 80, 160 have been tested in polyphonic
signals with and without a weighting matrix. As shown in
Figure 3, a general trend of decreasing performance can
be observed when rH > 5 without a weighting matrix.
With a weighting matrix, however, the performance slightly
increases for both HH and SD, and slightly decreases for BD
as the rH increases. The results demonstrate the robustness
of the proposed system against the rank selection when a
weighting matrix is introduced.

By increasing the rank rH, a larger WH will be initialized
to better adapt to the target signal, however, this unbalanced
increase in templates would also decrease the weight of the
drum templates in the optimization process, thus reducing
the impact of the percussive templates on the NMF cost
function. This effect is reduced by the weighting matrix A
which balances the weights between drum and harmonic
templates.

4.3.2 Threshold Selection

The transcription results can be obtained after applying
onset detection on each drum activation (see Section 3.1).
However, the performance varies according to the selection
of the signal-adaptive threshold. To evaluate the influence
of different thresholds, the average F-measure of all drums
with different offset coefficient � on IDMT-SMT-Drums
dataset is shown in Figure 4. A general trend of parabolic
curve can be observed. This is in agreement with the find-
ings of Dittmar et al. [5]. One major difference is that in
most regions of the curve, both AM1 and AM2 outperform
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Figure 3. Average F-measure versus harmonic rank rH in
(Top) without weighting matrix (Bottom) with weighting
matrix

Figure 4. Evaluation results for IDMT-SMT-Drums dataset
using (a) PFNMF (Solid circle) (b) AM1 (Dash diamond)(c)
AM2 (Dotted square)

PFNMF. This verifies that template adaptation process does
help the algorithm in the case of the unknown sounds (tem-
plates and the test signals are from two different datasets).
The overall performance is slightly lower than [5] due to the
mismatch in templates and target signals. However, the F-
measures of AM1 can reach 74.0%, 93.2% and 73.4% for
HH, BD, SD, respectively, which indicates the applicability
of the proposed method across datasets.

4.3.3 Results

Table 1 shows the evaluation results on ENST drum dataset
minus one subset without accompaniments. For comparison,
we also list the results of Gillet et al. [9] and Paulus et
al. [16]. All the compared methods use the same dataset
with identical mixing settings (1/3 for accompaniments and
2/3 for drum tracks). Since the target signals contain only
drum sounds, the rank rH can be small. In this experiment,
rH is set to 10 for absorbing drum sounds other than HH,
BD and SD. The results show that our proposed method is
able to transcribe drum events with an average F-measure
of 77.9% using AM2. This result is higher than the 73.8%
reported in [9], and at the same level as reported in [16].

Table 2 shows the evaluation results on ENST drum
dataset minus one subset with accompaniments. The com-
pared methods are the same as described above. Since the
target signals contain both percussive and harmonic parts,
rH is set to 50. The results show that our proposed method
achieves an average F-measure = 72.2% using AM2, which
is higher than 67.8% [9] and at a similar range as the 72.7%,
reported in [16].

In general, our methods outperform [9] for all instru-
ments except the snare drum. The possible reason is that
many of the playing technique variations are applied to the
snare (e.g., ghost note, rim shot, with/without snare on),
and a single snare drum template cannot cover all the pos-
sibilities even with template adaptation. In the polyphonic
dataset, our proposed methods perform better on BD and
SD but slightly worse on HH compared to the HMM based
method [16]. Since Paulus et al. [16] trained and tested their
system using the same ENST dataset, the music played by
all three drummers is highly correlated because of the same
accompaniments used. This may lead to a tendency of over-
fitting the transition probability in this dataset. For all the
methods, the performances drop from the monophonic to
the polyphonic dataset, especially for BD and SD. This is
an unsurprising trend. The less prominent decrease for HH
might be due to the fact that the typical frequency range of
HH is more separated from other instruments than BD and
SD, thus is more robust against the presence of tonal sounds.
In the case of template adaptation, a general trend of in-
crease in precision and decrease in recall can be observed.
One explanation is that once a better representation of the
drum templates is found, the system might become more
selective, leading toward a reduction in both false positives
and true positives.

AM1 seems to perform better than AM2 on BD in both
monophonic and polyphonic dataset. One possible expla-
nation is that bass drum usually appears on the downbeats,
which tends to have higher correlation with other entries in
harmonic activation matrix. This means BD has a higher
chance of being adapted to better templates using AM1.
AM2 uses a more generalized adaptation process and per-
forms better on HH and SD. However, it is more computa-
tionally demanding since it adapts the templates constantly,
whereas AM1 only adapts when the correlation is above the
threshold. To sum up, both template adaptation methods
perform at the similar level, and the best fit of either method
for specific types of music still needs to be investigated.

5. CONCLUSION

We have presented a drum transcription system for both
monophonic and polyphonic music using partially fixed
NMF with template adaptation. The system is robust against
rank changes, and the evaluation results show that the two
presented template adaptation methods improve the preci-
sion of the system, leading toward better performance. The
proposed method is able to achieve average F-measures of
77.9% and 72.2% in monophonic and polyphonic music
respectively for detecting 3 classes of drums.

The presented method has the following advantages:
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Method Metric HH BD SD Mean

PFNMF
P 0.918 0.886 0.825 0.876
R 0.705 0.938 0.453 0.698
F 0.797 0.911 0.585 0.764

AM1
P 0.909 0.955 0.837 0.900
R 0.682 0.927 0.473 0.694
F 0.779 0.940 0.604 0.774

AM2
P 0.928 0.914 0.854 0.898
R 0.703 0.927 0.483 0.704
F 0.799 0.920 0.617 0.779

Gillet et al. [9]
P 0.736 0.798 0.710 0.748
R 0.865 0.700 0.642 0.735
F 0.795 0.745 0.674 0.738

Paulus et al. [16]
P 0.838 0.941 0.750 0.806
R 0.849 0.921 0.567 0.843
F 0.843 0.930 0.645 0.779

Table 1. Evaluation results for ENST drum dataset minus one subset without accompaniments

Method Metric HH BD SD Mean

PFNMF
P 0.902 0.714 0.684 0.766
R 0.706 0.862 0.464 0.677
F 0.792 0.781 0.552 0.708

AM1
P 0.904 0.781 0.758 0.814
R 0.679 0.856 0.45 0.661
F 0.775 0.816 0.564 0.719

AM2
P 0.908 0.774 0.726 0.802
R 0.694 0.855 0.466 0.671
F 0.786 0.812 0.567 0.722

Gillet et al. [9]
P 0.702 0.744 0.619 0.688
R 0.818 0.653 0.552 0.674
F 0.755 0.695 0.583 0.678

Paulus et al. [16]
P 0.847 0.802 0.663 0.770
R 0.826 0.815 0.453 0.698
F 0.836 0.808 0.538 0.727

Table 2. Evaluation results for ENST drum dataset minus one subset with accompaniments

First, the system only requires a few training samples for
template extraction, and these templates can adapt toward
the target sources gradually. This makes the system more
applicably to the real world use case. Second, adjustment
of the parameter rH allows the algorithm to work with poly-
phonic music, and the use of a weighting matrix prevents
the performance from dropping as rH increases. Third, the
cross-dataset evaluation results indicate a robustness against
template mismatches, possibly allowing the application in
situations with minimum prior knowledge. Last but not
least, the evaluation results indicate that the F-measure of
the proposed methods is at the same level as state-of-the art
systems with a lower model complexity.

Possible directions for future work include the automatic
estimation of rH for any given signal using a probabilistic
approach similar to [19]; this might be a solution for the
system to optimally select the rank. Furthermore, a more
detailed analysis of playing techniques might be necessary
toward a more complete drum transcription system. Finally,
different penalty terms for the NMF cost function, such as
sparsity, temporal continuity [24], or rank rH might be taken
into account for better adjustment of the current method.

6. REFERENCES

[1] David S Alves, Jouni Paulus, and José Fonseca. Drum
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