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ABSTRACT

In this paper we present a new tempo estimation algorithm
which uses a bank of resonating comb filters to determine
the dominant periodicity of a musical excerpt. Unlike ex-
isting (comb filter based) approaches, we do not use hand-
crafted features derived from the audio signal, but rather let
a recurrent neural network learn an intermediate beat-level
representation of the signal and use this information as in-
put to the comb filter bank. While most approaches apply
complex post-processing to the output of the comb filter
bank like tracking multiple time scales, processing differ-
ent accent bands, modelling metrical relations, categoris-
ing the excerpts into slow / fast or any other advanced pro-
cessing, we achieve state-of-the-art performance on nine
of ten datasets by simply reporting the highest resonator’s
histogram peak.

1. INTRODUCTION

Tempo estimation is one of the most fundamental music
information retrieval (MIR) tasks. The tempo of music
corresponds to the frequency of the beats, i.e. the speed at
which humans usually tap to the music.

In this paper, we only deal with global tempo estima-
tion, i.e. report a single tempo estimate for a given musi-
cal piece, and do not consider the temporal evolution of
tempo. Possible applications for such algorithms include
automatic DJ mixing, similarity estimation, music recom-
mendation, playlist generation, and tempo aware audio ef-
fects. Finding the correct tempo is also vital for many beat
tracking algorithms which use a two-folded approach of
first estimating the tempo of the music and then aligning
the beats accordingly.

Many different methods for tempo estimation have been
proposed in the past. While early approaches estimated the
tempo based on discrete time events (e.g. MIDI notes or a
sequence of onsets) [6], almost all of the recently proposed
algorithms [4, 7, 8, 17, 23, 28] use some kind of continuous
input. Generally, they follow this procedure: they trans-
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form the audio signal into a down-sampled feature, esti-
mate the periodicities and finally select one of the period-
icities as tempo.

As a reduction function, the signal’s envelope [26], band
pass filters [8, 17, 28], onset detection functions [4, 8, 23,
28] or combinations thereof are commonly used. Popu-
lar choices for periodicity detection include Fast Fourier
Transform (FFT) based methods like tempograms [3, 28],
autocorrelation [6, 8, 23, 25] or comb filters [4, 17, 26]. Fi-
nally, post-processing is applied to chose the most promis-
ing periodicity as perceptual tempo estimate. These post-
processing methods range from simply selecting the high-
est periodicity peak to more sophisticated (machine learn-
ing) techniques, e.g. hidden Markov models (HMM) [17],
Gaussian mixture model (GMM) regression [24] or sup-
port vector machines (SVM) [9, 25].

In this paper, we propose to use a neural network to
derive a reduction function which makes complex post-
processing redundant. By simply selecting the comb filter
with the highest summed output, we achieve state-of-the-
art performance on nine of ten datasets in the Accuracy 2
evaluation metric.

2. RELATED WORK

In the following, we briefly describe some important works
in the field of tempo estimation. Gouyon et al. [12] give
an overview of the first comparative algorithm evaluation
which took place for ISMIR 2004, followed by another
study by Zapata and Gómez [29].

The work of Scheirer [26] was the first one to process
the audio signal continuously rather than working on a
series of discrete time events. He proposed the use of
resonating comb filters, which are one of the main tech-
niques used for periodicity estimation since then. Periodic-
ity analysis is performed on a number of band pass filtered
signals and then the outputs of this analysis are combined
and a global tempo is reported.

Dixon [6] uses discrete onsets gathered with the spectral
flux method to build clusters of inter onset intervals which
are in turn processed by a multiple agent system to find the
most likely tempo. Oliveira et al. [23] extend this approach
to use a continuous input signal instead of discrete time
events and modified it to allow causal processing.

Klapuri et al. [17] jointly analyse the musical piece at
three time scales: the tatum, tactus (which corresponds to
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the beat or tempo) and measure level. The signal is split
into multiple bands and then combined into four accent
bands before being fed into a bank of resonating comb
filters similar to [26]. Their temporal evolution and the
relation of the different time scales are modelled with a
probabilistic framework to report the final position of the
beats. The tempo is then calculated as the median of the
beat intervals during the second half of the signal.

Instead of a multi-band approach as used in [17, 26],
Davies and Plumbley [4] process an autocorrelated version
of a complex domain onset detection function with a shift
invariant comb filter bank to get the beat period. Although
this method uses only a single dimensional input feature,
it performs almost as good as the competing algorithms
in [12] but has much lower computational complexity.

Gainza and Coyle [8] use a multi-band decomposition
to split the audio signal into three frequency bands and then
perform a transient / onsets detection (with different onset
detection methods). These are transformed via autocor-
relation into periodicity density functions, combined, and
weighted to extract the final tempo.

Gkiokas et al. [9] utilise harmonic / percussive source
separation on top of a constant-Q transformed signal in
order to extract chroma features and filter bank energies
from the separated signal respectively. Periodicity is esti-
mated for both representations with a bank of resonating
comb filters for overlapping windows of 8 seconds length
and the resulting features are combined before a metrical
level analysis is performed to report the final tempo. In a
consecutive work [10] they use a support vector machine
(SVM) to classify the music into tempo classes to better
predict the tempo to be reported.

Elowsson et al. [7] also use harmonic / percussive source
separation to model the speed of music. They derive var-
ious features like onset densities (for multiple frequency
ranges) and strong onset clusters and use a regression model
to predict the tempo of the signal.

Percival and Tzanetakis [25] use a “traditional” approach
by first generating a spectral flux onset strength signal, fol-
lowed by a stage which detects the beat period in overlap-
ping windows of approximately 6 seconds length (via gen-
eralised autocorrelation with harmonic enhancement) and
a final accumulating stage which gathers all these tempo
estimates and uses a support vector machine (SVM) to de-
cide which octave the tempo should be in.

Wu and Jang [28] first derive an unaltered and a low
pass filtered version of the input signal. Then they obtain a
tempogram representation of a complex domain onset de-
tection function for both signals to obtain tempo pairs. A
classifier is then used to report the final most salient tempo.

3. ALGORITHM DESCRIPTION

Scheirer [26] found it beneficial to compute periodicities
individually on multiple frequency bands and then subse-
quently combine them to estimate a single tempo. Klapuri
et al. [17] followed this route but Davies and Plumpley ar-
gued that is is enough to have a single – musically mean-
ingful – feature to estimate the periodicity of a signal [4].

Given the fact that beats are the musically most relevant
descriptors for the tempo of a musical piece, we take this
approach one step further and do not use the pre-processed
signal directly – or any representation that is strongly cor-
related with it, e.g. an onset detection function – as an input
for a comb filter, but rather process the signal with a neural
network which is trained to predict the positions of beats
inside the signal. The resulting beat activation function is
then fed into a bank of resonating comb filters to determine
the tempo.

Neural 
Network

Comb
Filter BankSignal TempoSignal

Preprocessing

Figure 1: Overview of the new tempo estimation system.

Figure 1 gives general overview over the different steps
of the tempo estimation system, which are described into
more detail in the following sections.

3.1 Signal Pre-Processing

The proposed system processes the signal in a frame-wise
manner. Therefore the audio signal is split into overlapping
frames and weighted with a Hann window of same length
before being transferred to a time-frequency representa-
tion by means of the Short-time Fourier Transform (STFT).
Two adjacent frames are located 10 ms apart, which corre-
sponds to a rate of 100 fps (frames per second). We omit
the phase portion of the complex spectrogram and use only
the magnitudes for further processing. To reduce the di-
mensionality of the signal, we process it with a logarith-
mically spaced filter which has three bands per octave and
is limited to the frequency range [30, 17000] Hz. To bet-
ter match the human’s perception of loudness, we scale the
resulting frequency bands logarithmically. As the final in-
put features for the neural network, we stack three spec-
trograms and their first order difference calculated with
different STFT sizes of 1024, 2048 and 4096 samples, a
visualisation is given Figure 2b.

3.2 Neural Network Processing

As a network we chose the system presented in [1], which
is also the basis for the current state-of-the-art in beat track-
ing [2, 18]. The output of the neural network is a beat
activation function, which represents the probability of a
frame being a beat position. Instead of processing the beat
activation function to extract the positions of the beats, we
use it directly as a one-dimensional input to the bank of
resonating comb filters.

Using this continuous function instead of discrete beats
is advantageous since the detection is never 100% effec-
tive und thus introduces errors when inferring the tempo
directly from the beats. This is in line with the observation
that recent tempo induction algorithms use onset detection
functions or other continuously valued inputs rather than
discrete time events.
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(a) Input audio signal

(b) Input to the neural network

(c) Neural network output (beat activation function)

(d) Resonating comb filter bank output

(e) Maxima of the resonating comb filter bank

(f) Weighted histogram with summed maxima

Figure 2: Signal flow of a 6 second pop song excerpt: (a)
input audio signal, (b) pre-processed input to the neural
network, (c) its raw (dotted) and smoothed (solid) output,
(d) corresponding comb filter bank response, (e) the max-
ima thereof, (f) resulting raw (dotted) and smoothed (solid)
weighted histogram of the summed maxima. The beat po-
sitions and the tempo are marked with vertical red lines.

We believe that the learned feature representation (at
least to some extent) incorporates information that other-
wise would have to be modelled explicitly, either by track-
ing multiple time scales [17], processing multiple accent
bands [26], modelling metrical relations [9], dividing the
excerpts into slow / fast categories [7] or any other advanced
processing. Figure 2c shows an exemplary output of the
neural network. It can be seen that the network activation
function has strong regular peaks that do not always coin-
cide with high energies in the network’s inputs.

3.2.1 Network Training

We train the network on the datasets described in Section
4.2 which are marked with an asterisk (*) in an 8-fold
cross validation setting based on a random splitting of the
datasets. We initialise the network weights and biases with
a uniform random distribution with range [�0.1, 0.1] and
train it with stochastic gradient decent with a learning rate
of 10�4 and a momentum of 0.9. We stop training if no im-
provement of the cross entropy error of the validation set
can be observed for 20 epochs. All adjustable parameters
of the system are tuned to maximise the tempo estimation
performance on the validation set.

3.2.2 Activation Function Smoothing

The beat activation function of the neural network reflects
the probability that a given frame is a beat position. How-
ever, it can happen that the network is not sure about the
exact position of the beat if it falls close to the border be-
tween two frames and hence splits the reported probability
between these two frames. Another aspect to be considered
is the fact that the ground truth annotations used as targets
for the training are sometimes generated via manual tap-
ping and thus deviate from the real beat position by up to
50 ms. This can result also in blurred peaks in the beat acti-
vation function. To reduce the impact of these artefacts, we
smooth the activation function before being processed with
the filter bank by convolving it with a Hamming window
of length 140 ms. 1

3.3 Comb Filter Periodicity Estimation

We use the output of the neural network stage as input to
a bank of resonating comb filters. As outlined previously,
comb filters are a common choice to detect periodicities
in a signal, e.g. [4, 17, 26]. The advantage of comb filters
over autocorrelation lays in the fact that comb filters also
resonate at multiples, fractions and simple rationales of the
filter lag. This behaviour is in line with the perception of
humans, which do not necessarily consider double or half
tempi wrong. We use a bank of resonating feed backward
comb filters with different time lags (⌧ ), defined as:

y(t, ⌧) = x(t) + ↵ ⇤ y(t � ⌧, ⌧). (1)

Each comb filter adds a scaled (by factor ↵) and delayed
(with lag ⌧ ) version of its own output y(t) to the input sig-
nal x(t) with t denoting the time frame index.

1 Because of this smoothing the beat activations do not reflect proba-
bilities any more (and they may exceed the value of 1), but this does not
harm the overall interpretation and usefulness.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 627



3.3.1 Lag Range Definition

For the individual bands of the comb filter bank we use a
linear spacing of the lags with the minimum and maximum
delays calculated as:

⌧min = b60 ⇤ fps/bpmmaxc
⌧max = d60 ⇤ fps/bpmmine (2)

with fps representing the frame rate of the system given in
frames per second and the minimum and maximum tempi
bpmmin and bpmmax given in beats per minute. We found
the tempo range of [40, 250] bpm to perform best on the
validation set.

3.3.2 Scaling Factor Definition

Scheirer [26] found it beneficial to use different scaling
factors ↵(⌧) for the individual comb filter bands. He de-
fines them such that the individual filters have the same
half-energy time. Klapuri [17] also uses filters with ex-
ponentially decaying pulse response, but sets the scaling
factor such that the response decays to half after a defined
time of 3 seconds.

Contrary to these findings, we use a single value for all
filter lags, which is set to ↵ = 0.79. The reason that a sin-
gle value works better for this system may lay in the fact
that we sum all peaks of the filters. With a fixed scaling
factor, the resonance of filters with smaller lags tend to de-
cay faster, but they also produce more peaks, hence leading
to a more “balanced” histogram.

3.3.3 Histogram Building

After smoothing the neural network output and process-
ing it with the comb filter, we build a weighted histogram
H(⌧) from the output y(t, ⌧) by simply summing the ac-
tivations of the individual comb filters (over all frames)
if this filter produced the highest peak at the given time
frame:

H(⌧) =
T

X

t=0

y(t, ⌧) ⇤ I(⌧, arg max
⌧

y(t, ⌧))

I(a, b) =

(

1 if a ⌘ b

0 otherwise

(3)

with t denoting the time frame index, T the total number
of frames, and ⌧ the filter delays.

The bins of the weighted histogram correspond to the
time lags ⌧ and the bin heights represent the number of
frames where the corresponding filter has a maximum at
this delay, weighted by the activations of the comb fil-
ter. This weighting has the advantage that it favours fil-
ters which resonate at lags which correspond to intervals
with highly probable beat positions (i.e. high values of the
beat activation function) over those which are less proba-
ble. Figure 2d illustrates the output of the comb filter bank,
Figure 2e the weighted maxima which are used to build the
weighted histogram shown as the dotted line in Figure 2f.

3.3.4 Histogram Smoothing

Music almost always contains tempo fluctuations – at least
with regard to the frame rate of the system. Even stable
tempi result in weights being split between two or more
histogram bins. Therefore we combine bins before report-
ing the final tempo.

Our approach simply smooths the histogram by con-
volving it with a Hamming window with a width of seven
bins, similar to [25]. Depending on the bin index (corre-
sponding to the filter lag ⌧ ), a fixed width results in differ-
ent tempo deviations, ranging from �7% to +8% for a lag
of ⌧ = 24 (corresponding to 250 bpm) to �2% to +2.9%
for a lag of ⌧ = 40 (i.e. 40 bpm). Although this allows a
greater deviation for higher tempi, we found no improve-
ment over choosing the size of the smoothing window as
a function of the tempo. Figure 2f shows the smoothed
histogram as the solid line.

3.3.5 Peak Selection

The histogram shows peaks at the different tempi of the
musical piece. Again, previous works put much effort into
this stage to select the peak with the strongest perceptual
strength, ranging from simple rules driven by heuristics
[25] over GMM regression based solutions [24] to utilis-
ing a support vector machine (SVM) [10, 25] or decision
trees [25]. In order to keep our approach as simple as pos-
sible, we simply select the highest peak of the smoothed
histogram as our final tempo.

4. EVALUATION

To assess the performance of the proposed system we com-
pare it to an autocorrelation based tempo estimation method
as described in [1], which operates on the same beat activa-
tion function obtained with the neural network described in
Section 3.2. The algorithms of Gkiokas [9], Percival [25],
Klapuri [17], Oliveira [23], and Davies [4] were chosen as
additional reference systems based on their availability and
overall performance.

For a short description of these algorithms, please refer
to Section 2.

All of the algorithms were used in their default con-
figuration, except the system of Oliveira [23], which we
operated in offline mode with an induction length of 100
seconds, because it yielded significantly better results. 2

It should be noted however, that this mode results in a re-
duced tempo search range of 81-160 bpm, which can lead
to biased results in favour of datasets in this tempo range.

Following [29] and [25] we perform statistical tests of
our results compared to the others with McNemar’s test
using a significance value of p < 0.01.

4.1 Evaluation Metrics

Since humans perceive tempo and rhythm subjectively,
there is no single best tempo estimate. For example, the
perceived tempo can be a multiple or fraction of the tempo
given by the score of the piece. This is also known as

2 This corresponds to: ibt -off -i auto-regen -t 100
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the tempo octave problem. Therefore, two evaluation mea-
sures are used in the literature: Accuracy 1 considers only
the single annotated tempo for the evaluation, whereas Ac-
curacy 2 also includes integer multiples or fractions of the
annotated tempo. Since the data that we use also contains
music in ternary meter, we do not only add double and
half tempo annotations, but also triple and third tempo. In
line with most other publications we report accuracy values
which denote the algorithms’ ability to correctly estimate
the tempo of the musical piece with less than 4% deviation
form the annotated ground truth.

4.2 Datasets

We use a total of ten datasets to evaluate the performance
of our algorithm. Table 1 lists some statistics of the datasets.
Datasets marked with an asterisk (*) were used to train the
neural networks with 8-fold cross validation as described
in Section 3.2.1.

For all sets with beat annotations available (Ballroom,
Hainsworth, SMC, Beatles, RWC, HJDB), we generated
the tempo annotations as the median of the inter beat in-
tervals. For the HJDB set (which is in 4/4 meter), we first
derived the beat positions from the downbeat annotations
before inferring the tempo ground truth. For all other sets
we use the provided tempo annotations and – where appli-
cable – the corrected annotations from [25].

# files length annotations
Dataset

Ballroom [12, 19] * 685 3 5h 57m beats
Hainsworth [13] * 222 3h 19m beats
SMC [16] * 217 2h 25m beats
Klapuri [17] 474 7h 22m beats
GTZAN [25, 27] 999 8h 20m tempo
Songs [12] 465 2h 35m tempo
Beatles [5] 180 8h 9m beats
ACM Mirum [21, 24] 1410 15h 5m tempo
RWC Popular [11] 100 6h 47m beats
HJDB [15] 235 3h 19m downbeats
total 4987 63h 17m

Table 1: Overview of the datasets used for evaluation.

4.3 Results & Discussion

Table 2 lists the results of the proposed algorithm com-
pared to the reference systems. The results (of our algo-
rithm) reported on the Ballroom, Hainsworth and SMC
set are obtained with 8-fold cross-validation, since these
datasets were used to train the neural network. Although
this is a technically correct evaluation, it can lead to biased
results, since the system knows, e.g. about ballroom music
and its features in general and thus has an advantage over
the other systems. It is thus no surprise that the proposed
system outperforms the others on these sets.

3 We removed the 13 duplicates identified by Bob Sturm:
http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html

Nonetheless, the new system outperforms the autocor-
relation based tempo estimation method operating on the
very same neural network output in almost all cases. This
clearly shows the advantage of the resonating comb filters,
which are less prone to single missing or misaligned peaks
in the beat activation function, due to their recurrent na-
ture and the fact that they also resonate on fractions and
multiples of the dominant tempo.

The results for the other datasets reflect the algorithm’s
ability to estimate the tempo of a completely unknown sig-
nal without tuning any of the parameters. It can be seen
that no single system performs best on all datasets. Our
proposed system performs state-of-the-art (i.e. no other al-
gorithm is statistically significantly better) in all but the
HJDB set w.r.t. Accuracy 2. We even outperform most of
the other methods in Accuracy 1, which highlights the al-
gorithm’s ability to not only capture a meaningful tempo,
but also choose the correct tempo octave.

An inspection of incorrectly detected tempi in the HJDB
set showed that the algorithm’s histogram usually has a
peak at the correct tempo but that this peak is not the high-
est. The reason lays in the fact that this set contains mu-
sic with breakbeats and strong syncopation. Unfortunately,
the neural network often identifies these syncopated notes
as beats. Contrary to single or infrequently misaligned
beats, the comb filter is not able to correct regularly recur-
ring misalignments. E.g. in drum & bass music, where the
bass drum usually falls on the offbeat between the third and
fourth beat, this leads to additional peaks in the histogram
corresponding to 0.5 and 1.5 times the beat interval, and a
much lower peak at the correct position. Since we do not
perform intelligent clustering of the histogram peaks, of-
ten the rate of the downbeats is reported, which results in
a tempo which is not covered by the Accuracy 2 measure
any more.

4.4 MIREX Evaluation

We submitted the algorithm to last year’s MIREX evalua-
tion. 4 Performance is tested on a hidden set of 140 files
with a total length of 1 hour and 10 minutes. The tempo
evaluation used for MIREX is different, because for each
song the two most dominant tempi are annotated. MIREX
uses the following three evaluation metrics: P-Score [22]
and the percentage of files for which at least one or both of
the annotated tempi was identified correctly within a max-
imum allowed deviation of ±8% from the ground truth an-
notations. Since MIREX requires the algorithms to report
two tempi with a relative strength, we adopted the peak-
picking strategy outlined in Section 3.3.5 to simply report
the two highest peaks.

Table 3 gives an overview of the five best performing
algorithms (of different authors) over all years the MIREX
tempo estimation task is run, together with results for al-
gorithms also used for evaluation in the previous section.

Our algorithm ranked first in last year’s MIREX eval-
uation and achieved the highest P-Score and at least one
tempo reported correctly performance ever. The best per-

4 http://nema.lis.illinois.edu/nema out/mirex2014/results/ate/
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NEW Böck [1] Gkiokas [9] Percival [25] Klapuri [17] IBT [23] Davies [4]
Accuracy 1
Ballroom [12, 19] 0.950† 0.639†� 0.625� 0.653� 0.642� 0.651� 0.709�
Hainsworth [13] 0.847† 0.541†� 0.667� 0.721� 0.752� 0.698� 0.739�
SMC [16] 0.512† 0.442† 0.346� 0.267� 0.189� 0.166� 0.152�
Klapuri [17] 0.789 0.502� 0.741 0.732 0.768 0.724� 0.692�
GTZAN [25] 0.668 0.601� 0.716� 0.754+ 0.704+ 0.599� 0.582�
Songs [12] 0.477 0.570+ 0.570+ 0.611+ 0.585+ 0.486 0.424
Beatles [5] 0.850 0.700� 0.778 0.811 0.789 0.767 0.761�
ACM Mirum [21, 24] 0.741 0.540� 0.725 0.733 0.679� 0.621� 0.646�
RWC Popular [11] 0.600 0.450 0.900+ 0.810+ 0.770 0.750 0.770+
HJDB [14] 0.796 0.434� 0.783 0.285� 0.494� 0.911+ 0.706
Dataset average 0.721 0.543 0.563 0.638 0.636 0.637 0.617
Total average 0.734 0.560� 0.685� 0.677� 0.658� 0.623� 0.618�
Accuracy 2
Ballroom [12, 19] 1.000† 0.997† 0.981 0.953� 0.921� 0.921� 0.974
Hainsworth [13] 0.941† 0.910† 0.887 0.901 0.869 0.802� 0.878
SMC [16] 0.673† 0.599† 0.512� 0.438� 0.438� 0.359� 0.415�
Klapuri [17] 0.937 0.907� 0.954 0.937 0.918 0.880� 0.924
GTZAN [25] 0.950 0.942 0.938 0.925� 0.923� 0.841� 0.922�
Songs [12] 0.933 0.918 0.910 0.865� 0.910 0.791� 0.875�
Beatles [5] 0.983 0.967 0.978 0.989 0.928 0.883 0.978
ACM Mirum [21, 24] 0.976 0.958� 0.979 0.972 0.967 0.915� 0.975
RWC Popular [11] 0.950 0.940 1.000 1.000 0.990 0.980 1.000
HJDB [14] 0.868 0.851 0.911 1.000+ 0.864 0.991+ 1.000+
Dataset average 0.919 0.899 0.916 0.896 0.871 0.837 0.893
Total average 0.946 0.929� 0.935� 0.923� 0.909� 0.861� 0.923�

Table 2: Accuracy 1 and Accuracy 2 results for different datasets and algorithms, with best results marked in bold and +
and � denoting statistical significance compared to our results. † denote values obtained with 8-fold cross validation.

P-Score �1 tempo both tempi
Algorithm
NEW 0.876 0.993 0.629
Elowsson [7] 0.857 0.943 0.693
Gkiokas [9] 0.829 0.943 0.621
Wu [28] 0.826 0.957 0.550
Lartillot [20] 0.816 0.921 0.571
Klapuri [17] 0.806 0.943 0.614
Böck [1] 0.798 0.957 0.564
Davies [4] 0.776 0.929 0.457

Table 3: Results on the McKinney test collection used for
the MIREX evaluation.

forming algorithm for the both tempi correct evaluation
was the one submitted by Elowsson [7] in 2013, which ex-
plicitly models the speed of the music and thus has a much
higher chance to report the two annotated tempi which are
inferred from human beat tapping.

5. CONCLUSION

The presented tempo estimation algorithm based on recur-
rent neural networks and resonating comb filters is able to
perform state-of-the-art or outperforms existing algorithms
on all but one datasets investigated. Based on the high Ac-

curacy 2 score, which also considers integer multiples and
fractions of the annotated ground truth tempo, it can be
concluded that the system is able to capture a meaningful
tempo in almost all cases.

Additionally, we outperform many existing algorithms
w.r.t. Accuracy 1 which suggests that it is advantageous to
use a musically more meaningful representation than just
the onset strength of the signal – even if split into multiple
accent bands – as an input for a bank of resonating comb
filters.

In future, we want to investigate methods of perceptu-
ally clustering the peaks of the histogram to report the most
relevant tempo, as this has been identified to be the main
problem of the new algorithm when dealing with very syn-
copated music. We believe that this should increase the
Accuracy 1 performance considerably.

The source code and additional resources can be found
at: http://www.cp.jku.at/people/boeck/ISMIR2015.html.
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