
COMPARING VOICE AND STREAM SEGMENTATION ALGORITHMS

Nicolas Guiomard-Kagan
MIS, U. Picardie Jules Verne

Amiens, France

Mathieu Giraud
CRIStAL (CNRS, U. Lille)

Lille, France

Richard Groult Florence Levé
MIS, U. Picardie Jules Verne (UPJV)

Amiens, France
{nicolas, mathieu, richard, florence}@algomus.fr

ABSTRACT

Voice and stream segmentation algorithms group notes
from polyphonic data into relevant units, providing a bet-
ter understanding of a musical score. Voice segmentation
algorithms usually extract voices from the beginning to the
end of the piece, whereas stream segmentation algorithms
identify smaller segments. In both cases, the goal can be
to obtain mostly monophonic units, but streams with poly-
phonic data are also relevant. These algorithms usually
cluster contiguous notes with close pitches. We propose an
independent evaluation of four of these algorithms (Tem-
perley, Chew and Wu, Ishigaki et al., and Rafailidis et al.)
using several evaluation metrics. We benchmark the al-
gorithms on a corpus containing the 48 fugues of Well-
Tempered Clavier by J. S. Bach as well as 97 files of pop-
ular music containing actual polyphonic information. We
discuss how to compare together voice and stream segmen-
tation algorithms, and discuss their strengths and weak-
nesses.

1. INTRODUCTION

Polyphony, as opposed to monophony, is a music created
by simultaneous notes (see Figure 1) coming from several
instruments or even from a single polyphonic instrument,
such as the piano or the guitar. Polyphony usually implies
chords and harmony, and sometimes counterpoint when
the melody lines are independent.

Voice and stream segmentation algorithms group notes
from polyphonic symbolic data into layers, providing a
better understanding of a musical score. These algorithms
make inference and matching for relevant patterns easier.
They are often based on perceptive rules as studied by
Huron [7] or Deutsch [6]. Chew and Wu gathered these
rules into four principles [2]:

• (p1) Voices are monophonic;

c
� Nicolas Guiomard-Kagan, Mathieu Giraud, Richard

Groult, Florence Levé.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Nicolas Guiomard-Kagan, Mathieu
Giraud, Richard Groult, Florence Levé. “Comparing Voice and Stream
Segmentation Algorithms”, 16th International Society for Music Infor-
mation Retrieval Conference, 2015.

Figure 1: In this piano-roll representation, each segment
describes a note. The horizontal axis represents time and
the vertical axis represents the pitch.

• (p2) At least once, all voices must be played simul-
taneously;

• (p3) Intervals are minimized between successive notes
in the same stream or voice (pitch proximity);

• (p4) Voices tend not to cross.

Voice segmentation algorithms extract voices from the
beginning to the end of the piece. Usually, the resulting
voices are monophonic (p1) and, at some point, all the
voices do appear (p2). The algorithms described by Chew
and Wu [2] and Ishigaki et al. [9] first identify contigs of
notes, then link these contigs. These algorithms will be dis-
cussed later. De Valk et al. [5] proposed a machine learning
model with a neural network to separate voices in lute tab-
latures. The study of Kirlin and Utgoff [13] uses another
machine learning model to separate voices, taking in con-
sideration both actual polyphony and implicit polyphony,
such as the one obtained with arpeggios.

Stream segmentation algorithms identify segments gen-
erally smaller than complete voices. A stream is a group
of coherent notes, usually respecting principles such as
p3 and p4. Temperley’s algorithm [17] extracts streams
with respect to several constraints. Rafailidis et al.’s al-
gorithm [16], based on an earlier work by [11], uses a k-
nearest neighbors clustering technique on individual notes.
Both algorithms will be discussed in Sections 3.1 and 3.2.
The study by Madsen and Widmer [15], inspired by Tem-
perley [17], allows crossing voices. The method of Kilian
and Hoos [12] starts by cutting the input score into sec-
tions called slices such that all the notes of a slice overlap;
Then, an optimization method involving several evaluation

493

functions is applied to divide and combine the slices into
voices; The output voices can contains chords.

Depending on the algorithms, the predicted streams can
thus be small or large. However, such algorithms do pre-
dict groups of notes, especially contiguous relevant notes,
and may thus be compared against full voice segmentation
algorithms. De Nooijer et al. [4] made a comparison by
humans of several voice and stream separation algorithms
for melody finding.

In this paper, we independently evaluate some of these
algorithms, benchmarking in the same framework voice
and stream segmentation algorithms. We compare some
simple and efficient algorithms that were described in the
litterature [2, 9, 16] and added the algorithm in [17] for
which an implementation was freely available. Our corpus
includes Bach’s fugues (on which many algorithms were
evaluated) but also pop music containing polyphonic ma-
terial made of several monophonic tracks. The next two
sections detail these algorithms. Section 4 presents the
evaluation corpus, code, and methods. Section 5 details
the results and discusses them.

2. VOICE SEPARATION ALGORITHMS

2.1 Baseline

To compare the different algorithms, we use a very simple
reference algorithm, based on the knowledge of the total
number of voices (p2). The baseline algorithm assigns a
reference pitch for each voice to be predicted, then assigns
each note to the voice which has the closest reference pitch
(Figure 2).

Figure 2: The baseline algorithm assigns each note to the
voice having the closest reference pitch. This reference
pitch is computed by averaging pitches on segments having
the highest number of simultaneous notes. Here the middle
voice, Voice 1, has a reference pitch that is the average of
the pitches of notes 7, 9 and 11.

2.2 CW

The CW algorithm separates voices by using the four prin-
ciples (p1, p2, p3, p4) [2].

Contigs. The first step splits the input data into blocks
such that the number of notes played at the same time dur-
ing one block does not change. Moreover, when a note

crosses the border of two blocks and stops or starts to sound
inside a block, the block is split in two at this time. The
obtained blocks are called contigs (Figure 3). By construc-

Figure 3: Four contigs: Contig 3 contains three fragments,
{6}, {7, 9, 11} and {8, 10}.

tion, the number of played notes inside a contig is constant.
Notes are grouped from the lowest to the highest pitch in
voice fragments (Figure 3).

Figure 4: Connection Policy: All fragments are connected
with respect to p3.

Connection Policy. The second step links together frag-
ments from distinct contigs (see Figure 4). The contigs
containing the maximal number of voices are called max-
imal voice contigs (p2). The connection starts from these
maximal contigs: Since the voices tend not to cross, the
order of the voices attributed to fragments of these contigs
has a strong probability to be the good one (p2 and p4).

Given two fragments in contiguous contigs, CW defines
a connection weight, depending on n1, the last note of the
left fragment, and on n2, the first note of the right frag-
ment. If n1 and n2 are two parts of the same note, this
weight is �K, where K is a large integer, otherwise the
weight is the absolute difference between the pitches of
the two notes (p3). The fragments connected between two
contigs are the ones which minimize the total connection
weight (Figure 5).

2.3 CW-Prioritized

Ishigaki et al. [9] proposed a modification of CW algo-
rithm in the merging step between the contigs. Their key
observation is that the entry of a voice is often non am-
biguous, contrary to the exit of a voice that can be a “fade
out” which is difficult to precisely locate. Instead of start-
ing from maximal voice contigs, they thus choose to start

494 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

Figure 5: Connection between contigs: The selected links
are the ones minimizing the total weight (3 + 4 = 7).

only from adjacent contigs with an increasing number of
voices. For example in Figure 3, the procedure starts by
merging Contig 1 with Contig 2. The choice of merged
fragments is identical to the method described in CW al-
gorithm. After the merge of all fragments of two adjacent
contigs c1 and c2, we get a new contig containing the same
number of voices than in c2 (see Figure 6).

Figure 6: Contig combining: Contigs 1, 2, then 3 are com-
bined, resulting in a Contig 1+2+3 with 3 voices.

The procedure described above is reiterated as long as
two adjacent contigs have an increasing number of voices.
If at the end of this procedure, there is more than one con-
tig, they are merged by the original CW connection policy.

3. STREAM SEGMENTATION ALGORITHMS

We also study stream segmentation algorithms, which do
not segment a score into voices but into streams that may
include overlapping notes. Streams can be melodic frag-
ments, but also can cluster related notes, such as chords. A
voice can be thus split into several streams, and a stream
can cluster notes from different voices.

3.1 Streamer

The algorithm proposed by Temperley extracts streams while
respecting several constraints [17]. The first constraint is
pitch proximity: two contiguous notes with close pitches
are placed in the same stream (p3). The second constraint
is temporal: when there is a long rest between two notes,
the second note is put into a new stream (Figure 7). The
last principle allows the duplication of a note in two voices
(provided that the streams do not cross, p4).

Figure 7: Due to the rest after
note 2, Streamer assigns notes 1
and 2 to a stream that does not
include any other notes.

Figure 8: Stream Segment as-
signs notes 12, 13, 14, and 15 in
a same stream. The notes 13-15
can be seen as a transposition of
notes 12-14, forming a succes-
sion of chords.

3.2 Stream Segment

The algorithm by Rafailidis et al. [16] clusters notes based
on a k-nearest-neighbors clustering. The algorithm first
computes a distance matrix, which indicates for each pos-
sible pair of notes whether they are likely to belong to the
same stream. The distance between two notes is computed
according to their synchronicity (Figure 8), pitch and onset
proximity (among others criteria); then for each note, the
list of its k-nearest neighbors is established.

3.3 CW-Contigs

We finally note that the first step of the CW algorithm (con-
tig creation) can be considered as a stream segmentation al-
gorithm. We call this first step CW-Contigs. For example,
on the Figure 3, this method creates 8 streams correspond-
ing to the 8 voice fragments of the four contigs.

4. EVALUATION CORPUS AND METRICS

4.1 Evaluation corpus

Usually these algorithms are evaluated on classical music,
in particular on counterpoint music such as fugues, where
the superposition of melodic lines gives a beautiful har-
mony. As a fugue is made up several voices, this naturally
constitutes a good benchmark to evaluate voice separation
algorithms [2, 5, 9–11, 15–17]. We thus evaluated the al-
gorithms on the 48 fugues of the two books of the Well-
Tempered Clavier by J.-S. Bach 1 .

We also wanted to evaluate other forms of polyphonic
writing. The problem is to have a ground truth for this task.
From a set of 2290 MIDI files of popular music, we formed
a corpus suitable for the evaluation of these algorithms. We
focused on MIDI tracks (and not on MIDI channels). We
kept only “monophonic” tracks (where at most one note is
played at any time) of sufficient length (at least 20 % of
the length of the longest track). We deleted the tracks cor-
responding to the drums. We considered each remaining

1 .krn files downloaded from kern.ccarh.org [8]

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 495

corpus wtc-i wtc-ii pop
files 24 24 97

voices 3.5 3.4 3.0
notes 1041 1071 874

Table 1: Files, and aver-
age number of voices and
notes for each corpus.

track as an independant voice. Finally, we kept 97 MIDI
files with at least 2 voices, composed on average of 3.0
voices (see Table 1).

4.2 Evaluation code

We implemented the algorithms CW-Contigs, CW, CW-
Prioritized and Stream Segment, using a Python frame-
work based on music21 [3]. The Streamer algorithm 2 was
run with default parameters. As it quantizes input files, the
offset and duration of notes in the output are slightly dif-
ferent from the ones in our original files: We thus had to
associate notes to the correct ones.

4.3 Evaluation metrics

4.3.1 Note-based evaluation.

A first evaluation is to ask whether the voices are correctly
predicted. The note precision (NPR) is the ratio between
the number of notes correctly predicted (in the good voice)
over the total number of notes. On one voice, this mea-
sure is the same than the average voice consistency (AVC)
defined by [2]. However on a piece or on a corpus, we
compute the ratio on the total number of notes, instead of
averaging ratios as in [2]. Especially in the pop corpus, the
distribution of notes is not equal in all pieces and all voices,
and this measure better reflects the ability of the algorithm
to assign the good voice to each note.

Computing NPR requires to assert which voice in the
prediction corresponds to a given voice of the ground truth.
In a fugue, there may be a formal way to exactly define the
voices and number them, from the lowest one to the high-
est one. But, in the general case, this correspondance is not
always obvious. By construction, the two voice segmen-
tation algorithms studied here predict a number of voices
equal to the maximal number of voices, whereas the stream
segmentation algorithms have no limit for the number of
streams. In the general case, one solution is to compare
each voice predicted by the algorithm with the most simi-
lar voice of the ground truth, for example taking the voice
of the ground truth sharing the highest number of notes
with the predicted voice.

Note-based evaluation tends to deeply penalize some er-
rors in the middle of the scores: When a voice is split in
two, half of the notes will be counted as false even if the
algorithm did “only one” mistake. Moreover, this is not

2 downloaded from www.link.cs.cmu.edu/melisma

a fair way to evaluate stream segmentation algorithms, as
they may predict (many) more streams than the number of
voices. We thus use two other metrics, that better measure
the ability of the algorithms to gather notes into voices,
even when a voice of the ground truth is mapped to several
predicted voices. These metrics do not require to make the
correspondence between predicted voices and voices of the
truth.

4.3.2 Transition-based evaluation.

The result of voice or stream segmentation methods can
be seen as a set of transitions, that are pairs of succes-
sive notes in a same predicted voice or stream. We com-
pare these transitions against the transitions defined by the
ground truth, and compute usual precision and recall ratios.

The transition precision (TR-prec) (called soundness by
[13]) is the ratio of correctly assigned transitions over the
number of transitions in the predicted voices. This is re-
lated to fragment consistency defined in [2] – but the frag-
ment consistency takes only into account the links between
the contigs, and not all the transitions. The transition recall
(TR-rec) (called completeness by [13]) is the ratio of cor-
rectly assigned transitions over the number of transitions in
the truth. This is again related to voice consistency of [2].

For each piece, we compute these ratio on all the voices
– taking the number of correct transitions inside all the
voices, and computing the ratio over the number of tran-
sitions inside either all the predicted voices or all the truth.
When the number of voices in the ground truth and in the
prediction are equal, the TR-prec and TR-rec ratios are
thus equal: we simply call this measure TR. Figure 12, at
the end of the paper, details an example of NPR and TR
values for the six algorithms.

4.3.3 Information-based evaluation.

Finally, we propose to adapt techniques proposed to eval-
uate music segmentation, seen as an assignation of a label
to every audio (or symbolic) frame [1, 14]. Lukashevich
defines two scores, So and Su, based on normalized en-
tropy, reporting how an algorithm may over-segment (So)
or under-segment (Su) a piece compared to the ground
truth. The scores reflect how much information there is in
the output of the algorithm compared to the ground truth
(So) or conversely (Su). Here, we use the same metrics
for voice or stream segmentation: both the ground truth
and the output of any algorithm can be considered as an
assignation of label to every note. On the probability dis-
tribution of these labels, we then compute the entropies
H(predicted|truth) and H(truth|predicted), that become So

and Su after normalization [14]. As these scores are based
on notes rather than on transitions, they enable to measure
whether the clusters are coherent, even in situations when
two simultaneous voices are merged in a same stream (giv-
ing thus bad TR ratios).

496 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

wtc-i wtc-ii pop
avg. NPR TR So Su avg. NPR TR So Su avg. NPR TR So Su

Baseline 3.5 71.4% 63.7% 0.48 0.48 3.4 71.9% 62.6% 0.45 0.45 3 89.5% 87.1% 0.77 0.75
CW 3.5 83% 95.9% 0.73 0.73 3.4 87.8% 95.6% 0.73 0.73 3 84.6% 88.7% 0.76 0.76

CW-Prioritized 3.5 82.5% 97.4% 0.72 0.72 3.4 86.5% 97.1% 0.74 0.74 3 64.8% 89.4% 0.51 0.5
avg. TR-prec TR-rec So Su avg. TR-prec TR-rec So Su

Streamer 16 75.6% 68.3% 0.46 0.62 15.4 75.6% 65.2% 0.42 0.57
Stream Segment 191.1 76.5% 62.1% 0.23 0.79 214 77.4% 61.9% 0.21 0.79

CW-Contigs 226.2 99.4% 86.7% 0.34 0.98 282.3 99.4% 86.8% 0.34 0.98

Table 2: Results on the fugues and on the pop corpora. “avg.” is the average number of voices or streams predicted.

5. RESULTS AND DISCUSSION

We evaluated the six algorithms on the 48 fugues of Well-
Tempered Clavier by J. S. Bach, and moreover the voice
separation algorithms were evaluated on the 97 pop files.
Table 2 details the results.

5.1 Results

Note and transition-based evaluation. Between 80 % and
90 % of the notes are assigned correctly to the right voice
by at least one of the voice separation algorithms. The re-
sults confirm that these NPR metric is not very meaningful.
The baseline has good NPRs, and on the pop corpus, the
baseline NPR is even better than CW and CW-Prioritized.
Compared to the baseline algorithm, all algorithms output
longer fragments (see Figure 9). As expected, the transi-
tion ratio (TR) metrics are better to benchmark the ability
of the algorithms to gather relevant notes in the same voice:
all the algorithms have better TR metrics than the baseline.

The three stream segmentation algorithms predict more
streams that the number of voices in the ground truth, hence
low TR-rec ratios. The TR-prec ratios are higher, better
than the baseline, and the CW-Contigs has an excellent
TR-prec ratio.

Information-based evaluation. An extreme case is perfect
prediction, with NPR = TR = 100%, So = 1 and Su = 1
(like in Bach’s Fugue in E minor BWV 855 for both CW
and CW-Prioritized). In a pop song (allsaints-bootiecall)
where two voices play mostly same notes, the baseline al-
gorithm merges all notes in the same voice, so NPR and
TR are close to 50%, but So is close to 1 and Su close to 0.

Figure 9: Notes attributed to the wrong voice with
the baseline (left) and CW (right) algorithms on Bach’s
Fugue #2 – book II (in C minor, BWV 871). When
CW makes errors, the voices are kept in a same predicted
voice.

In the general case, Su is correlated with TR-prec, and
So with TR-rec. As expected, in stream segments algo-
rithms, Su is better than So. Note that the Stream Segment
has not the best TR-prec ratio (sometimes, it merges notes
that are in separate voices), but it has a quite good Su score
among all the algorithms (when it merges notes from sep-
arate voices, it tends to put in the same stream all notes
that are in related voices). The best Su scores are obtained
by the CW-Contigs, confirming the fact that the contig cre-
ation is a very good method that makes almost no error.

Figure 10: A note spanning two
contigs is split in A and A0.
CW and CW-Prioritized link the
fragments (A + A0), (B + C),
keeping A in the same voice.
The original implementation of
Ishigaki et al. links the frag-
ments (A + D), (B, A0), dupli-
cating the whole note A + A0.

Figure 11: Fragments A and
B are in different contigs due
to the overlap of previous notes.
Both CW-Prioritized and the
original implementation of Ishi-
gaki et al. link the fragments
(A + B + D) and (C), whereas
CW links the fragments (A+C)
and (B + D).

5.2 Partitioned notes and link weights

With CW algorithm, when a note is cut between two con-
tigs and the voices assigned to those two fragments are dif-
ferent, the predicted voices contain more notes than in the
input data. This case was not detailed in the study [2]. To
avoid split notes in the output of the algorithm, we choose
to allow voice crossing exactly at these points (Figure 10).

Our results for CW-Prioritized differ from the ones ob-
tained in [9]: Their AVC was better compared to CW. In
our implementation, the NPR ratio is lower for CW-Prio-
ritized compared to CW. In our implementation (as in the

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 497

original algorithm of CW), there is a �K weight to the link
between two parts of the same note. In the Ishigaki et al.
implementation, this weight is �1, and thus the algorithm
keeps partitioned notes in the output (see Figure 10). De-
spite this difference, our CW-Prioritized implementation
gives good results by considering TR both on the fugues
and on the pop corpus. even if it merges incorrectly some
contigs (see Figure 11).

5.3 A challenging exposition passage in a fugue

Figure 12 shows the results of the algorithms on a extract
of Bach’s Fugue #16 – book I. This passage is quite chal-
lenging for voice separation: all the four voices enter in
succession, and there is a sixth interval in the head of the
subject that often put voices very close. In the last measure
of the fragment, there is even a crossing of voices when the
soprano is playing this sixth interval.

The algorithms behave differently on this passage, but
none of them perfectly analyze it. Only CW-Prioritized
predicts correctly the first three measures, especially the
start of the alto voice at the first two beats of measure 12.
CW selects a bad link at the third beat of measure 14, re-
sulting in a bad prediction in measures 12/13/14 (but a high
TR ratio overall). Except on the places where almost all the
algorithms fail, Streamer has a correct result. Stream Seg-
ment creates many more streams, and, as expected, assigns
notes that overlap in the same stream, as on the first beat
of measure 12.

Finally, none of the algorithms successfully handles the
voice crossing, measure 15. CW-Contigs made here its
only clustering error (otherwise it has an excellent TR-
prec), linking the D of the soprano with the following G of
the alto. As expected, this error is found again in CW and
CW-Prioritized, and Streamer also splits apart the notes
with the highest pitch from the notes with the lowest pitch.
At this point, Stream Segment creates streams containing
both voices. Handling correctly this passage would require
to have a knowledge of the patterns (including here the
head of the subject with the sixth leap) and to favor to keep
these patterns in a same voice, allowing voice crossing.

6. CONCLUSIONS

Both voice and stream segmentation methods cluster notes
from polyphonic scores into relevant units. One difficulty
when benchmarking such algorithms is to define a ground
truth. Beside the usual fugues corpus, we proposed some
ideas to establish a pop corpus with polyphonic data suit-
able for evaluation.

Even stream segmentation algorithms give good results
in separating voices, as seen by the TR ratios and the Su

score. The Streamer algorithm is very close to a full voice
separation, predicting monophonic streams. The Stream

 !
 : soprano

"
 : alto

#
 : tenor

$
 : bass

Baseline (4 voices) NPR: 45/82, TR: 60/78

%
$

!
#
$

!"

#

!
&
$

15

'
(

#
#
%

#
$

"

$
#
$

#
#$

"
#
)

#
$

"

$

&"

$

**

#$

" &" "
#+

!

#
$ $

"#"
#
)

%
($ #$

)
#,

13

#
$# $ $

#

$

#- "

. /++ /-

/0

1

!2 ++

,
) #

#) #
,
#

$

"

$ %
#

"
#
$

14

(#
3
)

##
#

% # #

$

CW (4 voices) NPR: 36/82, TR: 69/78

%
$

"
#
$

!"

&

"
#
$

15

'
(

!
& &
%

&
$

!

$
#
$

"
#$

!
&
)

#
$

!

$

&!

$

**

#$

" &! !
#+

!

#
$ $

!&!
#
)

%
(& &$

)
&,

13

!
&# & &

!

&

!- !

. /++ /-

/0

1

!2 ++

,
) &

!) !
,
! !

$

!! !

$ %
&

!
&
$

14

(!
4
)

!!
&

% ! !

$

CW-Prioritized (4 voices) NPR: 73/82, TR: 76/78

%
$

"
#
$

!"

#

"
#
$

15

'
(

"
#
%

#
$

"

$
#
$

"
#$

"
#
)

#
$

!

$

&!

$

**

#$

" &! !
#+

!

#
$ $

!&!

#
)

%
(# #$

)
#,

13

"
#

"

#

"- "

. /++ /-

/0

1

!2 ++

,
) #

") "
,
" "

$

"" "

$ %
#

"
#
$

14

("
3
)

""
#

% " "

$

CW-Contigs (47 streams) TR-prec: 34/35, TR-rec: 34/78

%
#

$
!
#

&$

&

#
&
$

15

'
(

$
& &
%

&
#

$

$
&
$

$
!#

#
!
)

&
$

!

$

#"

#

**

&$

#! !
!+

!

&
$

!$"

!
)

%
(! !#

)
&,

13

$
&! ! !

#

!

#- $

. /++ /-

/0

1

!2 ++

,
) &

#) $
,
#

$

#

$ %
&

#
!
$

14

($
4
)

##
!

% $ #

$

Streamer (5 streams) TR-prec: 72/77, TR-rec: 72/78

%
$

"
#
$

!"

#

"
#
$

15

'
(

"
#
%

#
$

"

$
#
$

"
#$

"
#
)

#
$

!

$

&!

$

**

#$

! &! !
#+

!

#
$ $

!&!

#
)

%
(# ##

)
#,

13

"
#& # #

"

#

"- !

. /++ /-

/0

1

!2 ++

,
) #

") "
,
" "

$

"" "

$ %
#

"
#
$

14

("
3
)

""
#

% " "

$

Stream Segment (19 streams) TR-prec: 55/63, TR-rec: 55/78

%
!

#
&
!

##

&

#
&
!

15

'
(

!
& &
%

&
$

!

$
#
$

"
#$

!
&
)

$
#

"

#

&"

#

**

$#

! !! !
&+

#

&
! #

"!!

&
)

%
(& &#

)
&,

13

"
&! & $

#

$

#- !

. /++ /-

/0

1

!2 ++

,
) &

#) "
,
" !

$

!! !

$ %
&

!
!
$

14

(!
5
)

!!
!

% ! !

$

Figure 12: Output of the five algorithms on the measures
12 to 15 of Bach’s Fugue #16 – book I (in G minor, BWV
861). After the initial chord with almost all the voices, the
voices enter in succession (alto and tenor: m12, bass: m13,
soprano: m15).

Segment algorithm further enables to output some poly-
phonic streams that may be relevant for the analysis of the
score.

Focusing on voice separation problem, the contig ap-
proach, as initially proposed by [2], seems to be an excel-
lent approach – very few transition errors are made inside
contigs, as shown by the raw results of the CW-Contigs al-
gorithm. The challenge is thus to do the right connections
between the contigs. The ideas proposed by [9] are inter-
esting. In our experiments, we saw a small improvement
in our CW-Prioritized implementation compared to CW,
but details on how partitioned notes are processed should
be handled carefully. Further research should be done to
improve again the contig connection.

498 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

7. REFERENCES

[1] Samer Abdallah, Katy Noland, Mark Sandler,
Michael A Casey, Christophe Rhodes, et al. Theory
and evaluation of a bayesian music structure extractor.
In International Conference on Music Information Re-
trieval (ISMIR 2005), pages 420–425, 2005.

[2] Elaine Chew and Xiaodan Wu. Separating voices in
polyphonic music: A contig mapping approach. In In-
ternational Symposium on Computer Music Modeling
and Retrieval (CMMR 2005), pages 1–20. Springer,
2005.

[3] Michael Scott Cuthbert and Christopher Ariza. mu-
sic21: A toolkit for computer-aided musicology and
symbolic music data. In International Society for Mu-
sic Information Retrieval Conference (ISMIR 2010),
2010.

[4] Justin de Nooijer, Frans Wiering, Anja Volk, and
Hermi JM Tabachneck-Schijf. An experimental com-
parison of human and automatic music segmentation.
In International Computer Music Conference (ICMC
2008), pages 399–407, 2008.

[5] Reinier de Valk, Tillman Weyde, and Emmanouil
Benetos. A machine learning approach to voice separa-
tion in lute tablature. In International Society for Music
Information Retrieval Conference (ISMIR 2013), pages
555–560, 2013.

[6] Diana Deutsch. Grouping mechanisms in music. The
psychology of music, 2:299–348, 1999.

[7] David Huron. Tone and voice: A derivation of the rules
of voice-leading from perceptual principles. Music Per-
ception, 19(1):1–64, 2001.

[8] David Huron. Music information processing using the
Humdrum toolkit: Concepts, examples, and lessons.
Computer Music Journal, 26(2):11–26, 2002.

[9] Asako Ishigaki, Masaki Matsubara, and Hiroaki Saito.
Prioritized contig combining to segragate voices in
polyphonic music. In Sound and Music Computing
Conference (SMC 2011), volume 119, 2011.

[10] Anna Jordanous. Voice separation in polyphonic mu-
sic: A data-driven approach. In International Com-
puter Music Conference (ICMC 2008), 2008.

[11] Ioannis Karydis, Alexandros Nanopoulos, Apostolos
Papadopoulos, Emilios Cambouropoulos, and Yan-
nis Manolopoulos. Horizontal and vertical integra-
tion/segregation in auditory streaming: a voice sepa-
ration algorithm for symbolic musical data. In Sound
and Music Computing Conference (SMC 2007), 2007.

[12] Jürgen Kilian and Holger H Hoos. Voice separation-
a local optimization approach. In International Con-
ference on Music Information Retrieval (ISMIR 2002),
2002.

[13] Phillip B Kirlin and Paul E Utgoff. VOISE: learning
to segregate voices in explicit and implicit polyphony.
In International Conference on Music Information Re-
trieval (ISMIR 2005), pages 552–557, 2005.

[14] Hanna M Lukashevich. Towards quantitative measures
of evaluating song segmentation. In International Con-
ference on Music Information Retrieval (ISMIR 2008),
pages 375–380, 2008.

[15] Søren Tjagvad Madsen and Gerhard Widmer. Separat-
ing voices in midi. In International Conference on Mu-
sic Information Retrieval (ISMIR 2006), pages 57–60,
2006.

[16] Dimitris Rafailidis, Alexandros Nanopoulos, Emilios
Cambouropoulos, and Yannis Manolopoulos. Detec-
tion of stream segments in symbolic musical data. In
International Conference on Music Information Re-
trieval (ISMIR 2008), 2008.

[17] David Temperley. The Cognition of Basic Musical
Structures. Number 0-262-20134-8. Cambridge, MA:
MIT Press, 2001.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 499

