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ABSTRACT

The manipulation of different interpretational factors, in-
cluding dynamics, duration, and vibrato, constitutes the
realization of different expressions in music. Therefore,
a deeper understanding of the workings of these factors is
critical for advanced expressive synthesis and computer-
aided music education. In this paper, we propose the novel
task of automatic expressive musical term classification as
a direct means to study the interpretational factors. Specif-
ically, we consider up to 10 expressive musical terms, such
as Scherzando and Tranquillo, and compile a new dataset
of solo violin excerpts featuring the realization of different
expressive terms by different musicians for the same set of
classical music pieces. Under a score-informed scheme,
we design and evaluate a number of note-level features
characterizing the interpretational aspects of music for the
classification task. Our evaluation shows that the proposed
features lead to significantly higher classification accuracy
than a baseline feature set commonly used in music infor-
mation retrieval tasks. Moreover, taking the contrast of
feature values between an expressive and its corresponding
non-expressive version (if given) of a music piece greatly
improves the accuracy in classifying the presented expres-
sive one. We also draw insights from analyzing the feature
relevance and the class-wise accuracy of the prediction.

1. INTRODUCTION

The expressive meaning of music is generally related to
two inter-dependent factors: the structure established by
the composer (e.g., mode, pitch, or dissonance) and the in-
terpretation of the performer (e.g., expression) [21]. Glenn
Gould could phrase the trills in a way different from other
pianists. Mozart’s Grazioso should be interpreted unalike
to Brahms’. Although the interplay between the structural
and interpretational factors makes it difficult to character-
ize musical expressiveness from audio signals, it has been
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pointed out that such analysis is valuable in emerging ap-
plications such as automatic music transcription, computer-
aided music education, or expressive music synthesis [2,4,
7,19]. Accordingly, computational analysis of the interpre-
tational aspects in music expression has been studied for a
while. For example, Bresin et al. analyzed the statistical
behaviors of legato and staccato played with 9 expressive
adjectives (not expressive musical terms) [3]. Grachten
et al. made both predictive and explanatory modeling on
the dynamic markings (e.g., f, p, fz, and crescendo) [10].
Ramirez et al. considered an approach of evolutionary
computing for general timing and energy expressiveness
[18]. Marchini et al. analyzed the performance of string
quartets by the following three terms: mechanical, nor-
mal and exaggerated [14]. Recently, Rodà et al. further
considered expressive constants as affective dimensions of
music [20]. Related works also include the identification
of performers, singers and instrument playing techniques
in the context of musical expression [1, 6, 12, 15].

To model specific aspects of the complicated music ex-
pression quantitatively, a machine learning based approach
is usually taken. Given an audio input, features are ex-
tracted to characterize the interpretational aspects of mu-
sic, such as the dynamics, tempo and vibrato [3,9,12,14]. 1

If the symbolic or score data such as the MIDI or Mu-
sicXML are available, one can further introduce more struc-
tural aspects including tonality, pitch, note duration and
measure, amongst others [10, 15, 16]. In [14], the syn-
chronized audio, score and even motion data are utilized
to generate 4 sets of features, including sound level, note
lengthening, vibrato extent and bow velocity, in an attempt
to reveal human behaviors while playing the instrument
or indicate the structural information of music. This way,
the features investigated have music meanings, and can be
adopted for specific applications such as the prediction and
the generation of expressive performances [10, 18].

Among all the objects of music expression, we notice
that the expressive musical terms (EMT) 2 have garnered
less attention in the literature, although they have been

1 Here we assume that any real-world interpretation of an expressive
musical term performed by a musician can be “atomized” into several
(independent) factors such as dynamics, tempo, and vibrato.

2 In this paper, the expressive musical term is defined as the Italian
musical term which describes an emotion, feeling, image or metaphor,
rather than merely an indication of tempo or dynamics. It includes, but
not limited to the emotional terms (see Table 1).
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Violin pieces Measure Expressions
W. A. Mozart - Variationen 1-24 None, Scherzando, Tranquillo, Con Brio, Maestoso, Risoluto
T. A. Vitali - Chaconne 1-9 None, Scherzando, Affettuoso, Con Brio, Agitato, Cantabile
G. Faure - Elegie 2-9 None, Scherzando, Grazioso, Agitato, Espressivo, Cantabile
P. I. Tchaikovsky - String Quartet, No. 1, Mov. II 1-16 None, Affettuoso, Tranquillo, Con Brio, Cantabile, Risoluto
M. Bruch - Violin Concerto, No. 1, Mov. I 6, 10 (solo. ad lib.) None, Affettuoso, Tranquillo, Agitato, Maestoso, Cantabile
A. Vivaldi - La primavera, Mov. I 1-13 None, Scherzando, Affettuoso, Grazioso, Con Brio, Risoluto
A. Vivaldi - La primavera, Mov. II 2-11 None, Grazioso, Agitato, Espressivo, Maestoso, Cantabile
E. Elgar - Salut d’Amour 3-17 None, Affettuoso, Grazioso, Agitato, Espressivo, Maestoso
A. Vivaldi - L’autunno, Mov. I 1-13 None, Tranquillo, Grazioso, Con Brio, Espressivo, Risoluto
A. Vivaldi - L’autunno, Mov. III 1-29 None, Scherzando, Tranquillo, Espressivo, Maestoso, Risoluto

Table 1: The proposed dataset contains 10 different classical music pieces and each with 6 distinct expressions.

widely used in specifying expressions of classical music
for hundreds of years. How the interpretational factors (dy-
namics, duration or vibrato) are taken for a musician to in-
terpret the terms is still not well understood. This might be
due to the lack of a dataset containing various interpreta-
tions for a fixed set of classical music pieces.

In this paper we address these issues, and particularly,
focus on the classification of expressive musical terms in
violin solo music. We compile a new dataset of solo vio-
lin excerpts featuring the realization of 10 expressive terms
and 1 non-expressive term (e.g., no expression) by 11 dif-
ferent musicians for 10 classical music pieces (Section 2).
After collecting the MIDI and MusicXML data for the mu-
sic pieces, we design a number of dynamic-, duration- and
vibrato-based features under a score-informed scheme (Sec-
tion 3.2). Moreover, we also consider a baseline feature
set comprising of standard audio features that can be com-
puted without score information, such as the Mel-frequency
cepstral coefficients (MFCCs), spectral flux, spectral cen-
troid, and the zero-crossing rate (Section 3.1). As such
features have been widely used in music information re-
trieval tasks like the classification of mood, genre or in-
struments [25], we want to know whether they are also use-
ful for classifying the expressive musical terms. However,
we should note that many of the baseline features do not
bear clear music meanings as the proposed features do. In
our experiments, we will evaluate the performance of these
features for expressive musical term classification, and an-
alyze the importance of such features (Section 4).

The dataset is referred to as the SCREAM-MAC-EMT
dataset. For reproducibility and for calling more attention
to this research problem, we have made the audio files of
the recordings publicly available online. 3

2. THE SCREAM-MAC-EMT DATASET

To find out how a violinist interprets the expressive mu-
sical terms, the scope of the music data, the difference
in personal interpretation, and the suitability between the
music piece and the musical term are all considered. We
started by listing 20 typical violin pieces ranging across the
Baroque, Classical, and Romantic eras, such as Vivaldi’s
The Four Seasons, Beethoven’s Spring, and Schubert’s Ave
Maria, to name a few. Then, we consulted with 3 profes-

3 https://sites.google.com/site/pclipatty/
scream-mac-emt-dataset

Figure 1: Flowchart of the proposed system.

sional violinists, who are active in classical music perfor-
mance, to select 10 pieces from the list and assign 5 suit-
able expressive musical terms for each of them. The ma-
jor criterion of selecting the music pieces, as it turns out,
requires that an excerpt has a simple melody that can be
effectively manipulated to exhibit different characteristics
when being interpreted with different expressions.

The following 10 expressive terms are considered:
Tranquillo (calm), Grazioso (graceful), Scherzando (play-
ful), Risoluto (rigid), Maestoso (majestic), Affettuoso (af-
fectionate), Espressivo (expressive), Agitato (agitated),
Con Brio (bright), and Cantabile (like singing). 4 In order
to have a balanced dataset, we require that each expressive
musical term is associated with 5 pieces. This is not easy,
because not all of the 20 pieces can be interpreted with
diverse expressions. Eventually, some compromises have
to be made. For example, we chose Maestoso instead of
Cantabile for Elgar’s Salut d’Amour, although the former
is somewhat awkward for this music piece. The resulting
selection of the music pieces and the assigned expressions
is shown in Table 1.

After selecting the music pieces, we recruited 11 profes-
sional violinists to perform them one by one in a real-world
environment. In addition to the 5 assigned terms, every
musician performed a non-expressive (denoted as None)
version for each piece. Here, None means mechanical in-
terpretation [14] by which the music is of constant dynam-
ics, constant tempo and no vibrato. The dataset therefore
contains 660 excerpts as there are 10 classical music pieces
and each piece is interpreted by 6 different versions by all
the 11 violists. We have 110 excerpts of None, and 55 ex-
cerpts for each of the 10 expressions.

3. METHOD

Figure 1 shows the proposed system diagram. At the first
stage of the system, the input audio signal is aligned with

4 For more information, see http://www.musictheory.org.
uk/res-musical-terms/italian-musical-terms.php
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Name Abbreviation Note-level aggregation Song-level aggregation
Dynamics D M, Max, maxPos M, S, C

M

Duration ND, 1MD, 2MD, 4MD — M, S, C
M

FPD — —, C
M

Vibrato rate VR M, S, M�, S�, Max, Min, Diff M, S, C
M

Vibrato extent VE M, S, M�, S�, Max, Min, Diff M, S, C
M

Global vibrato extent GVE — M, S, C
M

Vibrato ratio vibRatio — —

Table 2: Proposed features, the note-level and song-level aggregation methods.

its corresponding MIDI file in order to find the onset and
offset positions and the pitch of each note in the audio
signal. To do this, we adopt a chromagram-based audio-
score alignment algorithm proposed in [23]. The posi-
tions of the bar lines are extracted from the MusicXML-
formatted score sheets by using an XML parser. 5 Then, to
better characterize the attributes of the basic temporal ele-
ments (note or bar) of music, frame-level features are ag-
gregated over time to generate note-level or bar-level fea-
tures according to the desired segmentation. Furthermore,
the note-level and bar-level features are aggregated again
into a song-level representation, which allows us to map
a variable-length sequence into a fixed-size feature vector
that can be fed into a classifier. Finally, in the classification
stage, we use radial-basis function (RBF) kernel Support
Vector Machine (SVM) implemented by LIBSVM [5].

For the feature aggregation process from note-level (or
bar-level) to song-level, we consider 3 different ways: (1)
taking mean value over all notes in the excerpt (M), (2)
taking standard deviation over all notes in the excerpt (S),
and (3) taking the contrast of M between the expressive
and its corresponding non-expressive version (CM): CM =
Mexpressive/MNone. CM here is designed to “calibrate” the
effect of None, which can be regarded as a baseline for the
other 10 expressive musical terms. That is, CM can some-
how tell how different the expressive feature is from its
non-expressive version. For the feature aggregation meth-
ods from frame-level to note-level, we will introduce them
separately since they are different for each feature.

We introduce below the baseline feature set and the pro-
posed feature set.

3.1 Baseline Features

The baseline features are a rich set of audio features cover-
ing dynamics, rhythm, tonal, and timbre. In particular, the
baseline features are a rich set of temporal, spectral, cep-
stral and harmonic descriptors. It contains the mean and
standard deviation of spectral centroid, brightness, spread,
skewness, kurtosis, roll-off, entropy, irregularity, flatness,
roughness, inharmonicity, flux, zero-crossing rate, low en-
ergy ratio, attack time, attack slope, dynamics and the
mean and standard deviation of first-order temporal dif-
ference for all the above features, totaling 4⇥17=68 fea-
tures. Besides, it involves the mean of fluctuation peak
and centroid, tempo, pulse clarity and event density, gen-
erating 5 features; the mean and standard deviation of

5 For more details about MusicXML, please refer to http://www.
musicxml.com/

mode and key clarity, resulting 4 features. Furthermore,
it includes the mean and standard deviation of the 40-D
MFCCs, �MFCCs (first-order temporal difference) and
��MFCCs (second-order temporal difference), totaling
2⇥120=240 features. In sum, we have 317 features ex-
tracted by the MIRtoolbox (version 1.3.4) [13].

3.2 Proposed Features

3.2.1 Dynamic Features

The dynamics of each note is estimated from the short-
time Fourier transform (STFT). Given a segmented note
x(n) and the Hanning window function w(n), the STFT is
represented as Xw (n, k) = Mw (n, k) ej�w(n,k), where
Mw (n, k) is the magnitude part, �w (n, k) is the phase
part, n is the time index, and k is the frequency index. The
dynamic level function D(n) is computed by the summa-
tion of the magnitude spectrogram over the frequency bins
and is expressed in dB scale:

D(n) = 20 log10

 

X

k

M(n, k)

!

. (1)

Three note-level dynamic features are computed from
D(n). Each of them are the mean value of D(n) (D-M),
the maximal value of D(n) (D-Max) and the proportion of
the maximum position to the note length (D-maxPos):

maxPos =
arg maxn D(n)

length (D(k))
⇥ 100% . (2)

D-maxPos therefore measures the time a note reaches
its maximal energy from its beginning, normalized to the
length of the note. All of these three note-level features are
then aggregated to song-level by M, S, and CM, totaling
9 features (see the second row of Table 2). For the D(n)
calculation, frames of 23ms (1014 samples) with an 82%
overlap (832 samples), as used in [14], are adopted.

3.2.2 Duration Features

After score alignment and note segmentation, we take the
following values as the features: the duration of every
single note (ND), measure (1MD), two-measure segment
(2MD), four-measure segment (4MD), and the full piece
(FPD) (see the third row of Table 2). We expect that these
features can capture the interpretation of local tempo vari-
ations measured by single notes, downbeats, and phrases.
We take M and S on ND, 1MD, 2MD and 4MD to obtain
song-level features. FPD itself is already a song-level fea-
ture so no aggregation is needed. Moreover, all of these
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Figure 2: Pitch contours of the first crotchet (C5)
of Mozart’s Variationen with 6 expressions: None,
Scherzando, Tranquillo, Con Brio, Maestoso and Risoluto.

five features are processed by CM. Figure 2 shows exam-
ples where the same note (a crotchet C5) is interpreted in
different ND for distinct expressions.

There are some more implementation details about the
duration features. If a music piece has an incomplete mea-
sure in the beginning (e.g., Vivaldi’s La primavera Mov. I)
then the incomplete measure is merged into the next one
and features are computed starting from the first complete
measure. If the length of a phrase is not the multiple of
the 2 or 4 measures then the remainders are combined as
a group. Bruch’s Violin Concerto No. 1 Mov. I (the 5th

piece) is an unusual instance that has two ad libitum mea-
sures. In this case, 4MD is set at zero. In the parser pro-
cess, a special part is to eliminate rests and ties because
they do not have a unique sound. The former means an in-
terval of silence and the latter has a curved line connecting
to its previous note of the same pitch, indicating that they
should be played as a single note.

3.2.3 Vibrato Features

Vibrato is an expressive manipulation of pitch correspond-
ing to a frequency modulation of F0 (fundamental fre-
quency) [17]. Because the vibrato is characterized by the
rate and extent of the frequency modulation of F0, a precise
estimation of the instantaneous pitch contour is needed.
Since the frequency resolution in the STFT representation
may not be high enough to represent the instantaneous fre-
quency, we compute the instantaneous frequency deviation
(IFD) [11] to estimate the instantaneous frequency:

IFDw (n, k) =
! �w

!t
= Im

✓

XDw

(n, k)

Xw (n, k)

◆

, (3)

where Dw (n) = w! (n). Given the pitch of each note
from the score, instantaneous frequency is computed by
summing the IFD and the bin frequency of the bin which
is nearest to the pitch frequency. Figure 2 also sketches
examples of the vibrato contours. We can see large differ-
ences in both duration and vibrato among them. For the

Figure 3: Illustration of vibrato rate, vibrato extent, and
global vibrato extent in a single note.

IFD calculation, a window of 1025 samples at 44.1 kHz
sampling rate and a hop size of 64 samples are applied.

After obtaining the vibrato contour of each note, we
adopt a moving-average filter with length of one-hundredth
of the note length to reduce the spurious variation of the
pitch contour. The filter length is empirically set so as
not to avoid much distortion and to remove high-frequent
noise. Based on the smoothed pitch contour, we consider
the vibrato rate (VR) and the vibrato extent (VE). The
former means the reciprocal of the time duration of two
consecutive peaks, while the latter means the frequency
deviation between a peak and its nearby valley. Follow-
ing [8], we require that a vibrato chain contains more than
3 points and VR is between 3 and 12 Hz; otherwise, the
vibrato chain is excluded. For each note, we compute the
mean, standard variation, mean of difference (M�), stan-
dard variation of difference (S�), maximum (Max), mini-
mum (Min) and difference (Diff) between the maximal and
minimal values of both VR and VE over all frames within
a note [24]. These note-level features are also aggregated
to song-level features by means of M, S, and CM.

In addition, we consider a note-level feature called
global vibrato extent (GVE), meaning the difference of the
maximal peak value and the minimal valley value within a
vibrato note as shown in Figure 3. GVE is also aggregated
to song-level features through M, S, and CM. Finally, we
consider a song-level feature called vibrato ratio (vibRa-
tio), defined as:

vibRatio =
# vibrato notes

# notes in a violin piece
⇥ 100% . (4)

When no vibrato note is detected or the ND is shorter than
125ms [14], the vibrato features are set at zero.

3.3 Feature Selection and Classification

To evaluate the importance of the adopted features in our
task, we perform feature selection on both the baseline and
the proposed feature sets. Here, the ReliefF routine of the
MATLAB statistics toolbox 6 is employed in the feature
selection process [22]. In the training process, ReliefF
sorts the features in descending order of relevance (impor-
tance). Then, the top-n! most relevant features are taken
for SVM modeling. The optimal feature number nopt

which results in the best accuracy is obtained by brute-
force searching.

6 http://www.mathworks.com/products/
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