
RAGA VERIFICATION IN CARNATIC MUSIC USING LONGEST
COMMON SEGMENT SET

Shrey Dutta
Dept. of Computer Sci. & Engg.
Indian Institute of Technology

Madras
shrey@cse.iitm.ac.in

Krishnaraj Sekhar PV
Dept. of Computer Sci. & Engg.
Indian Institute of Technology

Madras
pvkrajpv@gmail.com

Hema A. Murthy
Dept. of Computer Sci. & Engg.
Indian Institute of Technology

Madras
hema@cse.iitm.ac.in

ABSTRACT

There are at least 100 rāgas that are regularly performed
in Carnatic music concerts. The audience determines the
identity of rāgas within a few seconds of listening to an
item. Most of the audience consists of people who are only
avid listeners and not performers.

In this paper, an attempt is made to mimic the listener.
A rāga verification framework is therefore suggested. The
rāga verification system assumes that a specific rāga is
claimed based on similarity of movements and motivic pat-
terns. The system then checks whether this claimed rāga is
correct. For every rāga, a set of cohorts are chosen. A rāga
and its cohorts are represented using pallavi lines of com-
positions. A novel approach for matching, called Longest
Common Segment Set (LCSS), is introduced. The LCSS
scores for a rāga are then normalized with respect to its
cohorts in two different ways. The resulting systems and
a baseline system are compared for two partitionings of a
dataset. A dataset of 30 rāgas from Charsur Foundation 1

is used for analysis. An equal error rate (EER) of 12% is
obtained.

1 Introduction
Rāga identification by machine is a difficult task in Car-

natic music. This is primarily because a rāga is not defined
just by the solfege but by svaras (ornamented notes) [13].
The melodic histograms obtained for the Carnatic music
are more or less continuous owing to the gamakā 2 laden
svaras of the rāga [23]. Although the svaras in Carnatic
music are not quantifiable, for notational purposes an oc-
tave is divided into 12 semitones: S, R1, R2(G1), R3(G2),
G3, M1, M2, P, D1, D2(N1), D3(N2) and N3. Each rāga is
characterised by atleast 5 svaras. Ārohana and avarohana
correspond to an ordering of svaras in the ascent and de-

1 http://www.charsurartsfoundation.org
2 Gamakā is a meandering of a svara encompassing other permissible

frequencies around it.
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scent of the rāga, respectively. Ragas with linear ordering
of svaras are referred to as linear ragas such as Mohonam
rāga (S R2 G3 P D2 S). Similarly, non linear ragas have
non linear ordering such as Ananda Bhairavi raga (S G2
R2 G2 M1 P D2 P S). A further complication arises owing
to the fact that although the svaras in different rāgas may
be identical, the ordering can be different. Even if the or-
dering is the same, in one rāga the approach to the svara
can be different, for example, todi and dhanyasi.

There is no parallel in Western classical music to rāga
verification. The closest that one can associate with, is
cover song detection [6, 16, 22], where the objective is to
determine the same song rendered by different musicians.
Whereas, two different renditions of the same rāga may
not contain identical renditions of the motifs.

Several attempts have been made to identify rāgas [2–4,
7,8,12,14,26]. Most of these efforts have used small reper-
toires or have focused on rāgas for which ordering is not
important. In [26], the audio is transcribed to a sequence of
notes and string matching techniques are used to perform
rāga identification. In [2], pitch-class and pitch-dyads dis-
tributions are used for identifying rāgas. Bigrams on pitch
are obtained using a twelve semitone scale. In [18], the au-
thors assume that an automatic note transcription system
for the audio is available. The transcribed notes are then
subjected to HMM based rāga analysis. In [12,25], a tem-
plate based on the ārohana and avarohana is used to deter-
mine the identity of the rāga. The frequency of the svaras
in Carnatic music is seldom fixed. Further, as indicated
in [27] and [28], the improvisations in extempore enuncia-
tion of rāgas can vary across musicians and schools. This
behaviour is accounted for in [10, 11, 14] by decreasing
the binwidth for computing melodic histograms. In [14],
steady note transcription along with n-gram models is used
to perform rāga identification. In [3] chroma features are
used in an HMM framework to perform scale indepen-
dent rāga identification, while in [4] hierarchical random
forest classifier is used to match svara histograms. The
svaras are obtained using the Western transcription sys-
tem. These experiments are performed on 4/8 different
rāgas of Hindustani music. In [7], an attempt is made to
perform rāga identification using semi-continuous Gaus-
sian mixtures models. This will work only for linear rāgas.
Recent research indicates that a rāga is characterised best
by a time-frequency trajectory rather than a sequence of
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Vocal Instruments TotalMale Female Violin Veena Saxophone Flute
Number of Ragas 25 27 8 3 2 2 30 (distinct)
Number of Artists 53 37 8 3 1 3 105
Number of Recordings 134 97 14 4 2 3 254
Total Duration of Recordings 30 h 22 h 3 h 31 m 10 m 58 m 57 h
Number of Pallavi Lines 655 475 69 20 10 15 1244
Average Duration of Pallavi Lines 11 s 8 s 10 s 6 s 6 s 8 s 8 s (avg.)
Total Duration of Pallavi Lines 2 h 1 h 11 m 2 m 55 s 2 m 3 h

Table 1. Details of the database used. Durations are given in approximate hours (h), minutes (m) or seconds (s).

quantised pitches [5, 8, 9, 19, 20, 24]. In [19, 20], the sama
of the tala (emphasised by the bol of tabla) is used to seg-
ment a piece. The repeating pattern in a bandish in Hin-
dustani Khyal music is located using the sama informa-
tion. In [8, 19], motif identification is performed for Car-
natic music. Motifs for a set of five rāgas are defined and
marked carefully by a musician. Motif identification is per-
formed using hidden Markov models (HMMs) trained for
each motif. Similar to [20], motif spotting in an ālāpana
in Carnatic music is performed in [9]. In [24], a number of
different similarity measures for matching melodic motifs
of Indian music was attempted. It was shown that the in-
tra pattern melodic motif has higher variation for Carnatic
music in comparison with that of Hindustani music. It was
also shown that the similarity obtained is very sensitive to
the measure used. All these efforts are ultimately aimed
at obtaining typical signatures of rāgas. It is shown in [9]
that there can be many signatures for a given rāga. To alle-
viate this problem in [5], an attempt was made to obtain as
many signatures for a rāga by comparing lines of compo-
sitions. Here again, it was observed that the typical motif
detection was very sensitive to the distance measure cho-
sen. Using typical motifs/signatures for rāga identification
is not scalable, when the number of rāgas under consider-
ation increases.

In this paper, this problem is addressed in a different
way. The objective is to mimic a listener in a Carnatic mu-
sic concert. There are at least 100 rāgas that are actively
performed today. Most listeners identify rāgas by refer-
ring to the compositions with similar motivic patterns that
they might have heard before. In rāga verification, a rāga’s
name (claim) and an audio clip is supplied. The machine
has to primarily verify whether the clip belongs to a given
rāga or not.

This task therefore requires the definition of cohorts for
a rāga. Cohorts of a given rāga are the ragas which have
similar movements while at the same time have subtle dif-
ferences, for example, darbar and nāyaki. In darbar raga,
G2 is repeated twice in avarohana. The first is more or less
flat and short, while the second repetition is inflected. The
G2 in nāyaki is characterised by a very typical gamakā.
In order to verify whether a given audio clip belongs to a
claimed rāga, the similarity is measured with respect to the
claimed rāga and compared with its cohorts using a novel
algorithm called longest common segment set (LCSS). LCSS

scores are then normalized using Z and T norms [1, 17].
The rest of the paper is organised as follows. Section 2

describes the dataset used in the study. Section 3 describes
the LCSS algorithm and its relevance for rāga verifica-
tion. As the task is rāga verification, score normalisation is
crucial. Different score normalisation techniques are dis-
cussed in Section 4. The experimental results are presented
in Section 5 and discussed in Section 6. The main conclu-
sions drawn from the key results in this paper are discussed
in Section 7

2 Dataset used
Table 1 gives the details of the dataset used in this work.

This dataset is obtained from the Charsur arts foundation 3 .
The dataset consists of 254 vocal and instrument live record-
ings spread across 30 rāgas, including both target ragas
and their cohorts. For every new rāga that needs to be ver-
ified, templates for the rāga and its cohorts are required.

2.1 Extraction of pallavi lines

A composition in Carnatic music is composed of three
parts, namely, pallavi, anupallavi and caranam. It is be-
lieved that the first phrase of the first pallavi line of a com-
position contains the important movements in a rāga. A
basic sketch is initiated in the pallavi line, developed fur-
ther in the anupallavi and caranam [21] and therefore con-
tains the gist of the rāga. The algorithm described in [21]
is used for extracting pallavi lines from compositions. De-
tails of the extracted pallavi lines are given in Table 1. Ex-
periments are performed on template and test recordings,
selected from these pallavi lines, as discussed in greater
detail in Section 5.

2.2 Selection of cohorts

Wherever possible 4-5 rāgas are chosen as cohorts of
every rāga. The cohorts of every rāga were defined by a
professional musician. Professionals are very careful about
this as they need to ensure that during improvisation, they
do not accidentally sketch the cohort. Interestingly, as in-
dicated by the musicians, cohorts need not be symmetric.
A rāga A can be similar in movement to a rāga B, but
rāga B need not share the same commonality with rāga
A. The identity of rāga B may depend on phrases similar
to rāga A with some additional movement. For example,

3 http://www.charsurartsfoundation.org
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to identify the rāga Indolam, the phrase G2 M1 D1 N2 S is
adequate, while Jayantashree rāga requires the phrase G2
M1 D1 N2 S N2 D1 P M1 G2 S.

3 Longest common segment set
In rāga verification, matching needs to be performed

between two audio clips. The number of similar portions
could be more than one and spread across the entire clip.
Therefore, there is a need for a matching approach that can
find these similar portions without issuing large penalties
for gaps in between them. In this section, a novel algorithm
called Longest Common Segment Set is described which
attempts to do the same.

Let X = hx1, · · · , xm; xi 2 R; i = 1 · · · mi be a se-
quence of m symbols and Y = hy1, · · · , xn; yj 2 R; j =
1 · · · ni be a sequence of n symbols where xi and yj are the
tonic normalized pitch values in cents [9]. The similarity
between two pitch values, xi and yj , is defined as

sim(xi, yj) =

(

1� |xi�yj |3
(3st)3

if | xi � yj |< 3st

0 otherwise
(1)

where st represents a semitone in cents. Due to different
styles of various musicians, an exact match between two
pitch values contributing to the same svara cannot be ex-
pected. Hence, in this paper a leeway of 3 semitones is
allowed between pitch values. Musically two pitch values,
3 semitones apart, cannot be called similar but this issue
is addressed by the cubic nature of the similarity function.
The function reaches its half value when the difference in
two symbols is approximately half a semitone. Therefore,
higher similarity scores are obtained when the correspond-
ing pitch values are at most half a semitone apart.

A common subsequence ZXY in sequences X and Y is
defined as

ZXY =

8

>

>

>

>

<

>

>

>

>

:

⌦

(xi1 , yj1), · · · , (xip , yjp)
↵

1  i1 < · · · < ip  m

1  j1 < · · · < jp  n

sim
k=1,··· ,p

(xik
, yjk

) � ⌧sim

(2)

where ⌧sim is a threshold which decides the membership
of the symbol pair (xik

, yjk
) in a subsequence ZXY . The

value of ⌧sim is decided empirically based on the domain
of the problem as discussed in Section 5. An example com-
mon subsequence is shown with red color in Figure 1.

3.1 Common segments

Continuous symbol pairs in a common subsequence are
referred to as a segment. Two different types of segments
are defined, namely hard and soft segments.

Hard segment is a group of common subsequence sym-
bols such that there are no gaps in between as shown in
green color in Figure 1. Then a hard segment, starting with
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Figure 1. An example of a common segment set between
two sequences representing the real data

a symbol pair (xi, yj), must be of the form

H l
XiYj

=

8

>

<

>

:

h(xi, yj), (xi+1, yj+1), · · · , (xi+l, yj+l)i
1  i < i + 1 < · · · < i + l  m

1  j < j + 1 < · · · < j + l  n
(3)

where l + 1 represents the length of the hard segment. The
score of the kth hard segment H l

Xik
Yjk

is defined as

hc
⇣

H l
Xik

Yjk

⌘

=
l

X

d=0

sim (xik+d, yjk+d) (4)

Soft segment is a group of common subsequence sym-
bols where gaps are permitted with a penalty. Therefore, a
soft segment consists of one or more hard segments (shown
with blue color in Figure 1). The gaps between the hard
segments decides the penalty assigned. Thus, the score of
the kth soft segment SXik

Yjk
, consisting of r hard seg-

ments, is defined as

sc
⇣

SXik
Yjk

⌘

=
r
X

s=1

hc
⇣

H l
Xik

Yjk

⌘

� �⇢ (5)

where � is the total number of gaps between r hard seg-
ments and ⇢ is the penalty for each gap. The number of
hard segments to be included in a soft segment is decided
by the running score of the soft segment. The running
score of the soft segment increases during the hard segment
and decreases during the gap due to penalties as shown in
gray-scale in Figure 1. During a gap, if the running score
decreases below a threshold ⌧rc (or becomes almost white
in Figure 1) then that gap is ignored and all the hard seg-
ments, encountered before it, are included into a soft seg-
ment.
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3.2 Common segment set
All segments together correspond to a segment set. The

score of a segment set (ss) is defined as

score (ssXY ) =

Pp
k=1 c

⇣

ZXik
Yjk

⌘2

min(m, n)2
(6)

where p is the number of segments, c refers to the score
computed in either (4) or (5) and Z refers to a segment
(hard or soft). This equation gives preference to longer
segments. For example, in case 1, there are 10 segments
each of length 2 and in case 2, there are 4 segments each of
length 5. In both the cases the total length of the segments
is 20 but in (6), case 1 is scored as 0.1 and case 2 is scored
as 0.25 when the denominator is taken to be 202. Longer
matched segments could be considered as a phrase or an
essential part of it. Whereas, shorter matched segments
could generally mean noise. Therefore, there is a heavier
penalty for shorter segments.

3.3 Longest common segment set
Longest common segment set (lcss) is a segment set

with maximum score value as defined in (7).

lcssXY = argmax
ssXY

(score (ssXY )) (7)

Therefore, lcss can be obtained by maximizing score in (6)
using dynamic programming.

3.4 Dynamic Programming algorithm to find longest
common segment set

The algorithm for finding the optimum soft segment set
is given in Algorithm 1. Optimum hard segment sets are
found similarly. In the algorithm, tables c and s are used
for storing the running score and the score of the common
segment sets, respectively. Table a is used for storing the
partial scores from s. Table d is maintained for backtrack-
ing the path of the LCSS. The arrows represent the subpath
to take while backtracking (up, left or cross). Input se-
quences to function LCSS are appended with symbols �x

and �y such that their similarity with any symbol is 0. This
is mainly required to compute the last row and column of
score table. On similarity, line 8 updates the running score
with a value based on the similarity, whereas line 9 updates
the score using the previous diagonal entry. When symbols
are dissimilar a gap is found. Lines 12 and 19 are used to
penalize the running score. If it is an end of the segment
then line 14 and 21 updates score as per (6). Line 26 up-
dates table a with the score value of the current segment
set when the beginning of a new segment is encountered.
When a gap is encountered line 28 updates it to �1. To
find the longest common segment set, backtracking is per-
formed to obtain the path in table d that has the maximum
score as given by table s. The boundaries of soft segments
can be found using the cost values while tracing the path.

4 Raga Verification
Let Trāga =

�

t1, t2, · · · , tNrāga

 

represent a set of tem-
plate recordings, where ‘rāga’ refers to the name of the

Algorithm 1 Algorithm for Soft-Longest Common Seg-
ment Set
Data:
c - table of size (m+2)⇥ (n+2) for storing running score
s - table of size (m + 2) ⇥ (n + 2) for storing score
d - table of size (m + 2) ⇥ (n + 2) for path tracking
a - table of size (m+2)⇥ (n+2) for storing partial scores.

1: function LCSS (hx1, · · · , xm, �xi, hy1, · · · , yn, �yi)
2: Initialize 1st row and column of c, s, d and a to 0
3: p min(m, n)
4: for i 1 to m + 1 do
5: for j  1 to n + 1 do
6: if sim(xi, yj) > ⌧sim then
7: di, j  “- ”

8: ci, j  ci�1, j�1 +
⇣

sim(xi, yj)�⌧sim

1�⌧sim

⌘

9: si, j  si�1, j�1

10: else if ci�1, j < ci, j�1 then
11: di, j  “ " ”
12: ci, j  max(ci�1, j � ⇢, 0)
13: if di�1, j = “- ” then
14: si, j  ai�1, j⇤p2+c2

i�1, j

p2

15: else
16: si, j  si�1, j

17: else
18: di, j  “ ”
19: ci, j  max(ci, j�1 � ⇢, 0)
20: if di, j�1 = “- ” then
21: si, j  ai, j�1⇤p2+c2

i, j�1

p2

22: else
23: si, j  si, j�1

24: q  max(ai�1, j�1, ai�1, j , ai, j�1)
25: if q = �1 and di, j = “-00 then
26: ai, j  si�1,j�1

27: else if ci, j < ⌧rc then
28: ai, j  �1
29: else
30: ai, j  q

rāga and Nrāga is the total number of templates for that
rāga. During testing, an input test recording, X, with a
claim is tested against all the template recordings of the
claimed rāga. The final score is computed as given in (8).

score (X, claim) = max
Y 2Tclaim

(score (lcssXY )) (8)

The final decision, of accepting or rejecting the claim, di-
rectly based on this score could be erroneous. Score nor-
malisation with cohorts is essential to make a decision, es-
pecially when the difference between two rāgas is subtle.

4.1 Score Normalization
LCSS scores corresponding to correct and incorrect claims

are referred as true and imposter scores, respectively. If
the imposter is a cohort rāga, then the imposter score is
also referred as cohort score. Various score normalization
techniques are discussed in the literature for speech recog-
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nition, speaker/language verification and spoken term de-
tection [1, 17].

Zero normalization (Z-norm) uses the mean and vari-
ance estimate of cohort scores for scaling. The advantage
of Z-norm is that the normalization parameters can be es-
timated off-line. Template recordings of a rāga are tested
against template recordings of its cohorts and the resulting
scores are used to estimate a rāga specific mean and vari-
ance for the imposter distribution. The normalized scores
using Z-norm can be calculated as

score
norm

(X, claim) =
score (X, claim)� µclaim

I

�claim
I

(9)

where µclaim
I and �claim

I are the estimated imposter parame-
ters for the claimed rāga.

Test normalization (T -norm) is also based on a mean
and variance estimation of cohort scores for scaling. The
normalization parameters in T -norm are estimated online
as compared to their offline estimation in Z-norm. During
testing, a test recording is tested against template record-
ings of cohort rāgas and the resulting scores are used to
estimate mean and variance parameters. These parameters
are then used to perform the normalization given by (9).

The test recordings of a rāga may be scored differently
against templates corresponding to the same rāga or im-
poster rāga. This can cause overlap between the true and
imposter score distributions. T -norm attempts to reduce
this overlap. The templates that are stored and the audio
clip that is used during test can be from different environ-
ments.

5 Performance evaluation
In this section, we describe the results of rāga verifi-

cation using LCSS algorithm in comparison with Rough
Longest Common Subsequence (RLCS) algorithm [15] and
Dynamic Time Warping (DTW) algorithm using different
normalizations.

5.1 Experimental configuration
Only 17 rāgas out of 30 were used for rāga verification

as only for 17 rāgas sufficient number of relevant cohorts
could be obtained from the 30 rāgas. This is due to non-
symmetric nature of the cohorts as discussed in Section 2.
For rāga verification, 40% of the pallavi lines are used as
templates and remaining 60% are used for testing. This
partitioning of dataset is done into two ways, referred as
D1 and D2. In D1, the variations of a pallavi line might
fall into both templates and test though it is not necessary.
Variations of a pallavi line are different from the pallavi
line due to improvisations. In D2, these variations can ei-
ther belong to template or they all belong to test but strictly
not present in both. The values of thresholds ⌧sim and
⌧rc are empirically chosen as 0.45 and 0.5, respectively.
Penalty, ⇢, issued for gaps in segments is empirically cho-
sen as 0.5.

5.2 Results
Table 2 and Figure 2 show the comparison of LCSS with

DTW and RLCS using different normalizations. Equal Er-

Algorithm Dataset No Norm Z-norm T -Norm
DTW D1 27.78 29.88 17.45

D2 40.81 40.03 35.96
RLCS D1 24.43 27.22 14.87

D2 41.72 42.58 41.20
LCSS (hard) D1 29.00 31.75 15.65

D2 40.28 40.99 34.11
LCSS (soft) D1 21.89 24.11 12.01

D2 37.24 38.96 34.57

Table 2. EER(%) for different algorithms using different
normalizations on different datasets.

ror rate (EER) refers to a point where false alarm rate and
miss rate is equal. For T -norm, the best 20 cohort scores
were used for normalization. LCSS (soft) with T -norm
performs best for D1 around the EER point, and for high
miss rates and low false alarms, whereas it performs poorer
than LCSS (hard) for low miss rates and high false alarms.
This behavior appears to be reversed for D2. The mag-
nitude around EER is much greater for D2. This is be-
cause, none of the variations of the pallavi lines in test are
present in the templates. It is also shown that RLCS per-
forms poorer than any other algorithms for D2. The curves
also show no improvements for Z-norm compared to base-
line with no normalization. This can happen due to the way
normalization parameters are estimated for Z-norm. For
example, some of the templates, which may not be similar
to the test, can be similar to some of the cohorts’ templates,
resulting in higher mean. This would not have happened in
T -norm where the test itself is tested against the cohorts’
templates.

6 Discussion
In this section, we discuss how LCSS (hard) and LCSS

(soft) can be combined to achieve better performance. We
also verify that T -norm reduces the overlap between true
and imposter scores.

6.1 Combining hard-LCSS and soft-LCSS
Instead of selecting a threshold, we will assume that a

true claim is correctly verified when its score is greater than
all the cohort scores. Similarly, a false claim is correctly
verified when its score is lesser than atleast one of the co-
hort scores. Table 3 shows the number of claims correctly
verified only by hard-LCSS, only by soft-LCSS, by both
and by neither of them. It is clear that there is an overlap
between the correctly verified claims of hard-LCSS and
soft-LCSS. Nonetheless, the number of claims distinctly
verified by both is also significant. Therefore, the com-
bination of these two algorithms could result in a better
performance.

6.2 Reduction of overlap in score distribution by
T -norm

Figure 3 shows the effect of T -norm on the distribution
of hard-LCSS scores. It is clearly seen that the overlap, be-
tween the true and imposter score distributions, is reduced
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Figure 2. DET curves comparing LCSS algorithm with different algorithms using different score normalizations

Dataset Claim- Hard- Soft- Both Neither
type only only

D1 True 23 55 289 77
False 46 78 1745 54

D2 True 47 23 155 220
False 99 75 1585 168

Table 3. Number of claims correctly verified by hard-
LCSS only, by soft-LCSS only, by both and by neither of
them for D1 and D2 using T -norm
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Figure 3. Showing the effect of T -norm on the score dis-
tribution

significantly. For visualization purposes, the true score dis-
tributions are scaled to zero mean and unit variance and
corresponding imposter score distributions are scaled ap-
propriately.

6.3 Scalability of rāga verification

The verification of a rāga depends on the number of its
cohort rāgas which are usually 4 or 5. Since it does not
depend on all the rāgas in the dataset, as in rāga identifi-
cation, any number of rāgas can be added to the dataset.

7 Conclusion and future work
In this paper, we have proposed a different approach to

rāga analysis in Carnatic music. Instead of rāga identi-

fication, rāga verification is performed. A set of cohorts
for every rāga is defined. The identity of an audio clip is
presented with a claim. The claimed rāga is verified by
comparing with the templates of the claimed rāga and its
cohorts by using a novel approach. A set of 17 rāgas and
its cohorts constituting 30 rāgas is tested using appropri-
ate score normalization techniques. An equal error rate of
about 12% is achieved. This approach is scalable to any
number of rāgas as the given rāga and its cohorts need to
be added to the system.
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