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ABSTRACT

The determination of structural boundaries is a key task
for understanding the structure of a musical piece, but it
is also highly ambiguous. Recently, Convolutional Neural
Networks (CNN) trained on spectrogram features and hu-
man annotations have been successfully used to tackle the
problem, but still fall clearly behind human performance.
We expand on the CNN approach by combining spectro-
grams with self-similarity lag matrices as audio features,
thereby capturing more facets of the underlying structural
information. Furthermore, in order to consider the hier-
archical nature of structural organization, we explore dif-
ferent strategies to learn from the two-level annotations of
main and secondary boundaries available in the SALAMI
structural annotation dataset. We show that both measures
improve boundary recognition performance, resulting in a
significant improvement over the previous state of the art.
As a side-effect, our algorithm can predict boundaries on
two different structural levels, equivalent to the training
data.

1. INTRODUCTION

The decomposition of a piece of music into parts known
as movements, phrases, chorus and verse, etc., also com-
monly referred to as musical form, is an important task and
a major challenge in music analysis. However, the identifi-
cation and exact placement of transition points, or, bound-
aries between such structural elements is often indistinct,
even for trained human annotators. Figure 1 represents an
excerpt of the piece “The Wet Spot” by “Southern Culture
On The Skids” (index 1358 in the SALAMI collection,
see Section 4.1). Two different sets of human-annotated
boundaries (ground truth) are depicted by vertical marks
at the top and bottom of the plots. They clearly illustrate
the ambiguity of annotating boundaries at a certain level of
detail. The annotators agreed well on the positions of the
boundaries, but for some of these they disagreed whether
they should be considered strong (or ‘coarse’, delimiting
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‘large scale’, resp., ‘functional’ sections) 1 or weak (‘fine’,
delimiting ‘small scale’ sections). This poses a problem as
the common methodology used for the evaluation of struc-
tural annotation ignores the hierarchical nature and consid-
ers only one level of detail, usually the coarse boundaries.

The currently by far best-performing methods for
boundary detection use Convolutional Neural Networks
(CNNs), trained on large corpora of human-annotated
structural annotations. The algorithms are based on mel-
scaled log-magnitude spectrograms (MLSs), taking into
account a relatively short context of a few seconds, depend-
ing on the desired precision. As shown in Figure 1a, the
CNN based solely on an MLS or a variation such as MLS-
HPSS (Harmonic-Percussive Source Separation, see [1]),
has difficulties of identifying certain boundaries, indicated
by low probabilities in the prediction curve (Figure 1b).
We have investigated in [3] that self-similarity lag matrices
(SSLMs, see Figures 1c and 1d) can be used as additional
alternative structural information to significantly improve
boundary detection.

In this contribution, we expand on our approach by
combining more input features, and put particular fo-
cus on the integration of multiple and two-level annota-
tion ground-truth, as available in the SALAMI dataset.
The structure of the paper is as follows: After giving an
overview over related work in Section 2, we propose our
method in Section 3. In Section 4, we describe the ex-
perimental setup and our evaluation strategy. Section 5
presents our main results. We wrap up in Section 6 with
a discussion and outlook.

2. RELATED WORK

Following the overview paper by Paulus et al. [12], three
fundamental approaches to music structure analysis can
be distinguished: Novelty-based, detecting transitions be-
tween contrasting parts, homogeneity-based, identifying
sections that are consistent with respect to their musical
properties, and repetition-based, building on the determi-
nation of recurring patterns. Novelty is typically computed
from self-similarity matrices (SSMs) or self-distance ma-
trices (SDMs) by sliding a checkerboard kernel along the
diagonal [2], building on audio descriptors like MFCCs,
pitch class profiles, or rhythmic features [10]. Turnbull

1 See [16] and SALAMI Annotator’s Guide, http://www.music.
mcgill.ca/˜jordan/salami/SALAMI-Annotator-Guide.
pdf, accessed 2015-05-04
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(a) Mel-scaled log-magnitude spectrogram

(b) CNN predictions for coarse boundaries on HPSS-decomposed
mel spectrogram

(c) Self-similarity lag matrix, 88 seconds context (SSLM far)

(d) Self-similarity lag matrix, 14 seconds context (SSLM near)

(e) CNN predictions for coarse boundaries on SSLMs near and
far combined

(f) CNN predictions for coarse boundaries on MLS-HPSS and
SSLMs near and far combined

(g) CNN predictions for fine boundaries on MLS-HPSS and
SSLMs near and far combined

Figure 1: Boundary recognition using CNNs on dif-
ferent underlying audio features, illustrated on the
piece “The Wet Spot” by “Southern Culture On The
Skids”. Two sets of human annotation ground-truth
are shown in red on top and bottom of each plot.
Coarse boundaries are thick, fine boundaries are thin.
Visit http://www.ofai.at/research/impml/
projects/audiostreams/ismir2015 for a
version with audio.

et al. [17] compute difference features on more com-
plex audio feature sets and use trained Boosted Decision
Stumps for boundary detection. In order to capitalize on
repeated patterns, SSMs or SDMs are used with various
heuristic rules and optimization schemes for structure for-
mation [4, 9, 11]. McFee and Ellis employ spectral clus-
tering [6], or add a supervised learning scheme using or-
dinal linear discriminant analysis and constrained cluster-
ing [5]. When using end-to-end neural network techniques
such as Ullrich et al.’s CNNs [18], the separation between
the fundamental approaches becomes blurred as the CNN
infers the relationships between audio features and ground
truth from the provided training data. In a similarly integral
fashion, Serrà et al. [15] propose an unsupervised method
explicitly combining all three domains.

3. PROPOSED METHOD

Our approach is derived from the work by Ullrich et al.
[18]. In the following, we will mainly describe our exten-
sions to this method.

3.1 Feature extraction

For each audio file under analysis, we first compute a STFT
magnitude spectrogram with a window size of 46 ms (2048
samples at 44.1 kHz sample rate) and 50% overlap, and ap-
ply a mel-scaled filterbank of n = 80 triangular filters from
80 Hz to 16 kHz and scale magnitudes logarithmically.

From this MLS we compute a HPSS decomposition
with a kernel size of 21⇥21 bins. Preliminary experiments
showed that the actual size is a rather insensitive parame-
ter. We either use MLS only or MLS-HPSS (two parallel
channels) as one part of the network input.

Our method of generating the SSLMs, which represent
similarities of the MLS at one point in time in relation to
points in the past, up to a certain lag time, is derived from
work by Serrà et al. [15] and described in detail in [3].
We use the MLS time series xi=1...N from above, down-
sample it by max-pooling of a factor p = 2, and apply a
DCT-II transformation on each frame with the static com-
ponent omitted. Several of these frames are concatenated
within a local time context of L bins, equivalent to 0.1 sec-
onds, resulting in the time series x̂i. A cosine distance
function �cos (x,y) = 1 �

D

x
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E

is used to build the
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Di,l = �cos (x̂i, x̂i�l) , l = 1 . . . bL
p c. (1)

To reveal relationships between distances across this ma-
trix, adaptive thresholding is performed with a smooth sig-
moid transfer function � (x) = 1/ (1 + e�x), yielding
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All indices i < 1 are wrapped around to i0 = i + bN

p c,
resulting in a time-circular SSLM.

3.2 Feature preprocessing

Like [18], for the MLS features, we pad the spectrogram
with pink noise of �70 dB FS as needed to process the
beginning and end of a piece. For the MLS-HPSS vari-
ant, the harmonic and percussive components are sepa-
rated at this point. After subsampling the MLS by taking
the maximum over 6 adjacent time frames without overlap
(max-pooling), we normalize to zero mean and unit vari-
ance for each frequency band. For the SSLM features, we
use circular padding and pooling factors examined in [3]:
A factor of 3 for a time context of 14 seconds (feature
‘SSLM-near’), and a factor of 19 for a context of 88 sec-
onds (feature ‘SSLM-far’). We then also normalize each
lag band to zero mean and unit variance.

3.3 Convolutional neural network

CNNs are feed-forward networks that include convolu-
tional layers computing a convolution of their input with
small learned filter kernels of a given size. This allows
processing large inputs with few trainable parameters, and
retains the input’s spatial layout. When used for binary
classification, the network usually ends in one or more
dense layers integrating information over the full input at
once, discarding the spatial layout. Our architecture for
this work is based on the one used by Ullrich et al. [18] on
MLS features for their MIREX submission [14]. It has a
convolutional layer of 32 8 ⇥ 6 kernels (8 time frames and
6 frequency bands), a max-pooling layer of 3 ⇥ 6, another
convolution of 64 6 ⇥ 3 kernels, a dense layer of 128 units
and a dense output layer of 1 unit.

We employ a variant of this architecture to support mul-
tiple input features instead of one. A comparison of differ-
ent architectural variations has been shown in [3], where
a late ‘time-synchronous fusion’ of the input features, per-
formed in the last convolutional layer, yielded the best re-
sults: since the input features cover the same temporal con-
text at the same resolution, their feature maps can be syn-
chronously convolved over time. Figure 2 shows the un-
derlying CNN architecture used for all experiments in our
study. The inputs (bottom) are varied, e.g., MLS only is
used instead of MLS-HPSS, or one of the input legs is left
out. For the outputs (top), either only the coarse unit is
used, or both coarse and fine.

Training is done by mini-batch gradient descent, us-
ing the same hyper-parameters and tweaks as Ullrich et al.
[18]. Likewise, we follow the peak-picking strategy de-
scribed therein to retrieve likely boundary locations from
the network output.

conv

pool

conv

pool

dense

MLS-HPSS SSLM-near

conv conv

conv

conv

pool

SSLM-far

conv

coarse fine

dense

Figure 2: The CNN architecture in use for all the models.
The full model is shown here, inputs or outputs were varied
for the different experiments.

4. EXPERIMENTS

4.1 Data set

We base our experiments on the data set described by Ull-
rich et al. [18] which is a subset of the Structural Analysis
of Large Amounts of Music Information (SALAMI) [16]
version 1.2 database. A part of this SALAMI 1.2 data set
was also used in the “Audio Structural Segmentation” task
of the annual MIREX evaluation campaign in the years
2012 through 2014. 2 Lately, the data set has been up-
dated to version 2.0 3 with a large number of issues fixed.
The entire data set contains over 1600 musical recordings
of different genres and origins. In SALAMI version 2.0,
a total of 1164 recordings (with 763 double-annotated) are
publicly available. Identically to [18], we used 633 musi-
cal pieces for training, 100 for validation and 487 pieces
as a test set for final evaluation of our models against the
published results of the various MIREX submissions.

4.2 Evaluation

For the MIREX campaign’s boundary retrieval task, three
different evaluation measures are used: Hit rate for time
tolerances ±0.5 and ±3 seconds, and Median deviation.
The latter computes the median time distance between
each annotated boundary and its closest predicted bound-
ary, and vice versa. The former checks which predicted
boundaries fall close enough to an unmatched annotated
boundary (true positives), records remaining unmatched
predictions and annotations as false positives and nega-
tives, respectively, and computes the precision, recall and
F1 scores. The Hit rate F1 score is the measure most fre-
quently used in the literature.

2 Music Information Retrieval Evaluation eXchange, http://www.
music-ir.org/mirex, accessed 2015-04-30

3 https://github.com/DDMAL/salami-data-public/
releases/tag/2.0, accessed 2015-04-30
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As explicated in [18], baseline scores can be estimated
using variations of regularly or randomly spaced grids as
synthetic boundary estimates. For an evaluation tolerance
of ±0.5 seconds, the baseline within our test data set is
F1 ⇡ 0.15. Upper bounds, on the other hand, can be de-
rived from the differences between two independent anno-
tations of the same musical pieces. By analyzing the items
within our test data set that have been annotated twice (439
pieces), we calculated F1 ⇡ 0.74.

In the existing literature, both tolerances of ±0.5 and
±3 seconds are commonly used. For this contribution,
due to space constraints, we only evaluate for ±0.5 sec-
onds, where the explorable space, that is, the distance be-
tween the lower baseline and the upper bound exhibited
in human ground-truth annotations is much greater than
for ±3 seconds (with lower and upper bounds at 0.33 and
0.80, respectively). Our evaluation code is equivalent to
the boundary detection implemented in mir eval [13],
omitting the borders at the beginning and end of sound
files.

Nieto et al. [8] have identified the F0.58 measure to be
more perceptually informative than the typically used F1

measure. As this is a relatively new finding and it is not as
well established as the F1 measure (which is, e.g., used in
MIREX), we base threshold optimization and model selec-
tion on the latter.

4.3 Combination of features

Building on [3], we combine mel-scaled log-magnitude
spectrograms (MLS) and self-similarity lag matrices
(SSLM) as input features to the CNN. A decomposition
of MLS into harmonic and percussive components (fea-
ture ‘MLS-HPSS’) and the combination of two SSLMs,
one a high-resolution, low lag matrix, the other one a low-
resolution, high lag matrix, provides even more structural
information to the network. We mainly compare two mod-
els: ‘MLS + SSLM-near’ (the model developed in [3]),
and the more complex and computationally more expen-
sive model ‘MLS-HPSS + combined SSLM’, integrating
all available input features.

The different input features are fused at a relatively
late stage in the network (see Figure 2), using a convo-
lutional layer which spans all the vertical (frequency or
lag time) components, but only a very short time context.
This is motivated by the assumption that the input features
are strongly correlated in time. Figure 3 shows boundary
recognition scores for the ‘MLS + SSLM-near’ model and
three different context widths (1, 3 and 5 bins), evaluated
on the validation set. As can be seen, a temporal context
for the fusion layer of more than a single bin does not im-
prove the results.

4.4 Consideration of multiple annotations

Up to now, CNN-based boundary recognition algorithms
have been trained on data sets with just one annotation
version per music piece. SALAMI data contains dou-
ble annotations for the majority of training examples. It

Figure 3: Comparison of boundary recognition F1 scores
for different widths of the CNN fusion layer.

Figure 4: Comparison of boundary recognition F1 scores
for different models trained with single and multiple anno-
tations.

is worth inspecting whether multiple, potentially contra-
dicting annotations help or confuse the CNN training pro-
cess. Figure 4 shows the results for three different models
trained with single and multiple annotations, respectively,
evaluated on the validation set. Employing multiple anno-
tations by duplicating audio features and applying the alter-
native target annotations, the number of training examples
increase from 1198707 (with 70317⇥3 positive examples)
to 1670944 (98913⇥3 positive examples) data points, cor-
responding to +39%. A positive effect can be observed for
models with more versatile structural information available
for the network. In these cases, the increase of the F1 score
is in the range of 1–2%.

4.5 Integration of fine annotation

Traditionally, boundary detection in MIR has been per-
formed on only one structural level. As motivated in Sec-
tion 1, we would like to deal with the ambiguity of anno-
tating boundaries at a certain level of detail by capitalizing
on the two-level annotations present in the training data
set. This way, the neural network should be able to refine
its distinction between main and secondary boundaries.

We explored three different modes for the combination
of coarse and fine boundaries: Firstly, by using only one
target output vector by assigning full training weights to
coarse labels and reduced training weights (e.g., factors of
0.3 or 0.5) to fine labels. Secondly, by using two target
outputs with equal weights, one for the coarse labels and
one for the fine labels (‘concat’ mode). And finally, using
two target outputs, with coarse labels and full weights as-
signed to the first output vector. Fine labels are assigned to
the second output vector, but only where they are distinct
from a coarse label (‘contrast’ mode). This should create a
more pronounced contrast between coarse and fine labels
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Figure 5: Comparison of boundary recognition F1 scores
for different integration modes of the second-level ‘fine’
annotation, evaluated on our validation set.

with the potential danger of some contradiction.
Not for all of our training data two-level annotations

were available. We tried two variations: For the first one,
we put coarse boundaries where fine ones were not avail-
able (‘fine + coarse’), and for the second one, we used only
those annotations with two levels available (‘fine only’),
effectively reducing the number of training examples in-
cluding multiple annotations to 1224891 (with 74400 ⇥ 3
positive examples).

Figure 5 shows the results for the three combination
modes (with different weighting parameters) and two data
set variations, computed on MLS input features and eval-
uated on the validation set. The combination modes for
coarse and fine data with two output vectors perform bet-
ter than the ones with only one output. The ‘contrast’ mode
exhibits instabilities for the results, most probably due to
the relatively small validation data set. We selected the
best-performing and reliable ‘concat’ mode with two out-
put units as our working model. The distinction between
‘fine + coarse’ and ‘fine only’ variations is more or less in-
conclusive, with very little advantage for the latter. How-
ever, as the spreading of F1 scores is less for ‘fine only’,
we settled for this variation of the ‘concat’ mode.

5. RESULTS

Figure 6 shows boundary recognition scores (on the pri-
mary ‘coarse’ boundaries) of several of our models, with
peak-picking thresholds optimized on the validation set,
and results evaluated on the test set. Each model variation
has been trained and evaluated five times. The individual,
mean and ‘bagged‘ results are shown in the graph. ‘Bag-
ging’ means that the outputs of all five models are aver-
aged and peak-picking is performed on the result, thereby
reducing statistical variations. Using a MLS-HPSS de-
composition does not score significantly higher than MLS
only. Likewise, using a combination of SSLM ‘near’ (14
seconds lag, high resolution) and ‘far’ (88 seconds lag,
low resolution) does not score higher than SSLM ‘near’
only. However, in combination, it can be seen that all
‘MLS-HPSS + combined SSLM’ results are higher than
their respective equivalents of ‘MLS + SSLM-near’. For
both combined models, using multiple annotations raises
the scores relative to single annotations. Additional fine

Algorithm F
1

F
.58

Rec. Prec.
Upper bound (est.) .74 .74
All features, multi+fine ann. .508 .529 .502 .572
MLS+SSLM-near, multi+fine .496 .506 .509 .536
MLS+SSLM-near, single ann. .469 .466 .504 .475
SUG1 (2014) .422 .442 .422 .490
MP2 (2013) .294 .280 .362 .271
MP1 (2013) .276 .270 .311 .269
NB1 (2014) .270 .246 .374 .229
KSP2 (2012) .263 .231 .422 .209
Baseline (est.) .15 .21

Table 1: Boundary recognition scores for coarse bound-
aries at a tolerance of ±0.5 seconds, evaluated on our
SALAMI 2.0 test dataset. Comparison of our models
(in italics) with the five best-performing algorithms of the
MIREX campaigns 2012 through 2014.

Algorithm F
1

F
.58

Rec. Prec.
Upper bound (est.) .75 .76
All features, multi+fine ann. .485 .523 .443 .587
MLS+SSLM-near, multi+fine .478 .515 .439 .576
Baseline (est.) .23 .17

Table 2: Boundary recognition scores of two of our mod-
els for ‘fine’, second-level boundaries at a tolerance of
±0.5 seconds, evaluated on our SALAMI 2.0 test dataset.

annotations for CNN training further increase the scores.
On the right-hand-side of Figure 6 different feature com-
binations using multiple fine annotations are shown. The
more perspectives on the audio provided as input, the
higher the scores.

See Table 1 for a listing of our results in comparison to
the best-performing algorithms of the MIREX campaigns
2012 through 2014. All results have been evaluated on
SALAMI 2.0 data. Note that the scores are generally lower
than for SALAMI 1.2 annotations (cf. [18]). The reason
is that in the new data set version many formerly ‘trivial
boundaries’ (sitting at the beginning or end of sound files)
have been corrected. These boundaries have moved away
from the borders and are now headed, or trailed, respec-
tively, by silence or crowd noise, and are therefore more
difficult to predict. The ‘MLS+SSLM-near’ model trained
with single annotations is equivalent to the model used
in [3], with an additional dense layer in the present work.
‘All features’ denotes the ‘MLS-HPSS + combined SSLM’
model, yielding the best boundary prediction results.

Table 2 lists boundary recognition results of the ‘fine’
output unit of our network, trained and evaluated on the
‘small-scale’, second-level annotations of the SALAMI 2.0
data set. To our knowledge, only McFee and Ellis [6] have
so far evaluated their algorithms (as well as SMGA [15])
on the secondary boundaries. They report F1 scores up to
0.292 ± 0.15 on the SALAMI 1.2 dataset.

Table 3 presents boundary recognition results on the
Beatles-ISO dataset, 4 comprised of all 12 Beatles al-
bums with 180 songs in total. We used the best-scoring
model from above, using all input features, trained on

4 http://isophonics.net/content/
reference-annotations-beatles, accessed 2015-04-30
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Figure 6: Comparison of boundary recognition F1 scores on SALAMI 2.0 data for different models under examination.
Threshold optimization performed on validation set, evaluation done on test set.

Algorithm F
1

F
.58

Rec. Prec.
All features, multi+fine ann. .558 .590 .522 .640
MLS+SSLM-near, multi+fine .526 .553 .500 .597
SUG1 .424 .457 .385 .510
MP2-beatles .334 .321 .376 .311
MP2-salami .322 .313 .355 .309
NB1 .286 .274 .332 .266
MP1 .278 .280 .285 .285
NB2 .266 .255 .302 .247
NB3 .227 .211 .287 .200
Baseline (est.) .15 .22

Table 3: Boundary recognition scores at a tolerance of
±0.5 seconds, evaluated on the Beatles-ISO dataset (180
songs). Two of our models are compared to several pub-
lished state-of-the-art algorithms.

SALAMI 2.0 with multiple coarse and fine annotations.
We were able to compare the predictions of our CNN to
the best-performing algorithms of last years’ MIREX sub-
missions by Schlüter et al. (SUG1, personal communica-
tion), McFee and Ellis [5] (MP1 and MP2, the latter opti-
mized either for SALAMI and Beatles data), 5 and Nieto
and Bello [7] (NB1, NB2, NB3), 6 respectively. Note that
the scores of our models are above those of other state-of-
the-art algorithms by a large margin, although we have not
trained or tuned our models in any way specifically on the
kind of music realized by the Beatles.

6. DISCUSSION AND OUTLOOK

In this contribution, we have dealt with the prediction of
musically relevant structural boundaries, focused primarily
on the stylistically mixed SALAMI data set in its latest
version 2.0, with additional evaluation on the Beatles-ISO
data set.

We have re-used the CNN architecture developed in [3]
with some modifications. On the one hand, we have fed it a

5 https://github.com/bmcfee/olda, accessed 2015-05-01
6 https://github.com/urinieto/

SegmenterMIREX2014, accessed 2015-05-01

combination of different input features and have been able
to show that the CNN is able to produce highest-scoring
results with HPSS-decomposed mel-scaled spectrograms
(MLS) in combination with self-similarity lag matrices
(SSLMs) on two different time-scales, covering both struc-
tural detail and longer time context. On the other hand, we
have taken advantage of the fact that the SALAMI data set
is annotated on two structural levels, and, for the most part,
by two independent annotators. The integration of this sup-
plementary data helps the CNN to take better informed de-
cisions between primary and secondary boundaries. Eval-
uated on SALAMI 2.0 data, we have been able to raise
the state of the art from the best MIREX submission [14]
at F1 = 0.422, and our previous point of reference [3] at
F1 = 0.469 to the score of F1 = 0.508 for the best model,
integrating all available input features, as well as multiple
and two-level annotations. As the CNN model trained on
two-level annotation possesses two output units, its subse-
quent application also yields two independent predictions
for ‘coarse’ and ‘fine’ boundaries.

Although we have not touched (nor listened to) music
by the Beatles while developing our models, evaluation on
this data set reveals that our models are quite robust, yield-
ing a boundary recognition score of F1 = 0.558, which is
significantly higher than the previously published state of
the art.

We are still actively exploring the possibilities of CNNs
applied to music structure discovery. That said, we have
neither exhaustively researched the space of possible input
features, nor all meaningful variations of model architec-
ture and learning parameters. There is plenty of remaining
headroom to the ‘upper bound’ inter-annotator F1 scores.
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