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ABSTRACT

In this paper, an efficient, general-purpose model for multi-

ple instrument polyphonic music transcription is proposed.

The model is based on probabilistic latent component anal-

ysis and supports the use of sound state spectral templates,

which represent the temporal evolution of each note (e.g.

attack, sustain, decay). As input, a variable-Q transform

(VQT) time-frequency representation is used. Computa-

tional efficiency is achieved by supporting the use of pre-

extracted and pre-shifted sound state templates. Two vari-

ants are presented: without temporal constraints and with

hiddenMarkov model-based constraints controlling the ap-

pearance of sound states. Experiments are performed on

benchmark transcription datasets: MAPS, TRIOS,MIREX

multiF0, and Bach10; results on multi-pitch detection and

instrument assignment show that the proposed models out-

perform the state-of-the-art for multiple-instrument tran-

scription and is more than 20 times faster compared to a

previous sound state-based model. We finally show that a

VQT representation can lead to improved multi-pitch de-

tection performance compared with constant-Q represen-

tations.

1. INTRODUCTION

Automatic music transcription is defined as the process of

converting an acoustic music signal into some form of mu-

sical notation [16] and is considered a fundamental prob-

lem in the fields of music information retrieval and mu-

sic signal processing. The core problem of automatic mu-

sic transcription is multi-pitch detection (i.e. the detection

of multiple concurrent pitches), which despite recent ad-

vances is still considered an open problem, especially for a

large polyphony level and multiple instruments.

A large subset of music transcription approaches use

spectrogram factorization methods such as non-negative

matrix factorization (NMF) and probabilistic latent com-

ponent analysis (PLCA), which decompose an input time-

frequency representation into a series of note templates
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and note activations. Several variants of the above meth-

ods propose more complex formulations compared to the

original NMF/PLCA models, and also add musically- and

acoustically-meaningful constraints. Such spectrogram fac-

torization methods include amongst others [4, 8, 10,13,15,

18, 24]. Issues related to spectrogram factorization meth-

ods include: the choice of an input time-frequency rep-

resentation, the ability to recognize instruments, the sup-

port of tunings beyond twelve-tone equal temperament, the

presence or absence of a pre-extracted dictionary, the in-

corporation of any constraints, as well as computational

efficiency (given ever-expanding collections and archives

of music recordings).

In this paper, a model for multiple-instrument transcrip-

tion is proposed, which uses a 5-dimensional dictionary of

sound state spectral templates (sound states correspond to

the various states in the evolution of a note, such as the

attack, sustain, and decay states). The proposed model is

based on PLCA and decomposes an input time frequency

representation (in this case, a variable-Q transform spec-

trogram) into a series of probability distributions for pitch,

instrument, tuning, and sound state activations. This model

is inspired by a convolutive model presented in [4] that

used a 4-dimensional dictionary and was able to transcribe

a recording at 60 ⇥ real-time. This model uses pre-shifted

spectral templates across log-frequency, thus introducing a

new dimension in the dictionary and eliminating the need

for convolutions. Thus, tuning deviations from equal tem-

perament are supported and at the same time this model

only uses linear operations that result in a system that is

more than 20 times faster compared to the system of [4].

In addition, temporal constraints using pitch-wise hidden

Markov models (HMMs) are incorporated, in order to model

the evolution of a note as a sequence of sound states. Ex-

periments are performed on several transcription datasets

(MAPS, MIREX multiF0, Bach10, TRIOS) and experi-

mental results for the multi-instrument datasets using the

proposed system outperform the state-of-the-art. Finally,

we show that a VQT representation leads to an improve-

ment in transcription performance compared to the more

common constant-Q transform (CQT) representation, es-

pecially on the detection of lower pitches. Code for the

proposed model is also supplied (cf. Section 4).

The outline of this paper is as follows. The proposed

system is presented in Section 2. The employed training

and test datasets, evaluation metrics, and experimental re-
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Figure 1. Diagram for the proposed system.

sults are shown in Section 3. Finally, a discussion on the

proposed system followed by future directions is made in

Section 4.

2. PROPOSED SYSTEM

2.1 Motivation

The overall aim of the proposed work is the creation of

a system for automatic transcription of polyphonic mu-

sic, that supports the identification of instruments along

with multiple pitches, supports tunings beyond twelve-tone

equal temperament along with frequency modulations, is

able to model the evolution of each note (as a temporal

succession of sound states), and is finally computation-

ally efficient. The proposed system is based on work car-

ried out in [4], which relied on a convolutive PLCA-based

model and a 4-dimensional sound state dictionary. The

aforementioned model was able to transcribe recordings at

approximately 60 ⇥ real-time (i.e. for a 1min recording,

transcription took 60min). This paper proposes an alterna-

tive linear model able to overcome the computational bot-

tleneck of using a convolutive model, which is supported

by the use of a 5-dimensional dictionary of pre-extracted

and pre-shifted sound state spectral templates, at the same

time providing the same benefits with the model of [4]. Fi-

nally, this paper proposes the use of a variable-Q transform

(VQT) representation, in contrast with the more common

constant-Q transform (CQT) or linear frequency represen-

tations (a detailed comparison is made in Section 3). On

related work, a linear model that used a 4-dimensional dic-

tionary which did not support sound state templates or tem-

poral constraints was proposed in [3].

In Fig. 1, a diagram for the proposed system can be

seen. As motivation on the use of sound state templates,

two log-frequency representations for a G1 piano note are

shown in Fig. 2; it is clear that the note evolves from

an attack/transient state to a steady state, and finally to a

decay state. Fig. 3 shows 3 spectral templates extracted

for the same note, which correspond to the 3 sound states

(the lower corresponds to the attack state, the middle to the

steady state and the top to the decay state).

2.2 PLCA-based model

The first variant of the proposed system takes as input a

normalised log-frequency spectrogram V!,t (! is the log-

frequency index and t is the time index) and approximates

it as a bivariate probability distribution P (!, t). In this

work, V!,t is a variable-Q time-frequency representation

with a resolution of 60 bins/octave and minimum frequency
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Figure 2. (a) The CQT spectrogram of a G1 piano note.

(b) The VQT spectrogram for the same note.
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Figure 3. Sound state spectral templates for a G1 piano

note (extracted using a VQT representation).

of 27.5Hz, computed using the method of [22]. As dis-

cussed in [22], a variable-Q representation offers increased

temporal resolution in lower frequencies compared with a

constant-Q representation. At the same time, a log-frequency

transform represents pitch in a linear scale (where inter-

harmonic spacings are constant for all pitches), thus allow-

ing for pitch changes to be represented by shifts across the

log-frequency axis.

In the model, P (!, t) is decomposed into a series of

log-frequency spectral templates per sound state, pitch, in-

strument, and log-frequency shifting (which indicates de-

viation with respect to equally tempered tuning), as well as

probability distributions for sound state, pitch, instrument,

and tuning activations. As explained in [4], a sound state

represents different segments in the temporal evolution of

a note; e.g. for a piano, different sound states can corre-

spond to the attack, sustain, and decay.
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The model is formulated as:

P (!, t) =

P (t)
X

q,p,f,s

P (!|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)

(1)

where q denotes the sound state, p denotes pitch, s de-

notes instrument source, and f denotes log-frequency shift-

ing. P (t) is the energy of the log-spectrogram, which is a

known quantity. P (!|q, p, f, s) is a 5-dimensional tensor

that represents the pre-extracted log-spectral templates per

sound state q, pitch p and instrument s, which are also pre-
shifted across log-frequency f . The proposed pre-shifting

operation is made in order to account for pitch deviations,

without needing to formulate a convolutive model across

log-frequency, as in [4]. Pt(f |p) is the time-varying log-

frequency shifting distribution per pitch, Pt(s|p) is the in-
strument source contribution per pitch over time, Pt(q|p)
is the time-varying sound state activation per pitch, and fi-

nally Pt(p) is the pitch activation, which is essentially the

resulting multi-pitch detection output.

In the proposed model, f 2 [1, . . . , 5], where f = 3 is

the ideal tuning position for the template (using equal tem-

perament). Given that the input time-frequency represen-

tation has a resolution of 5 bins per semitone, this means

that all templates are pre-shifted across log-frequency on a

±20 and ±40 cent range around the ideal tuning position,

thus accounting for small tuning deviations or frequency

modulations. The proposed model also uses 3 sound states

per pitch; more information on the extraction of the sound

state spectral templates is given in subsection 3.1.

The unknownmodel parameters (Pt(f |p), Pt(s|p), Pt(p),
Pt(q|p)) can be iteratively estimated using the expectation-

maximization (EM) algorithm [9]. For the Expectation

step, the following posterior is computed:

Pt(q, p, f, s|!) =

P (!|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)
P

q,p,f,s P (!|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)
(2)

For the Maximization step, unknown model parameters

are updated using the posterior from (2):

Pt(f |p) =

P

!,s,q Pt(q, p, f, s|!)V!,t
P

f,!,s,q Pt(q, p, f, s|!)V!,t
(3)

Pt(s|p) =

P

!,f,q Pt(q, p, f, s|!)V!,t
P

s,!,f,q Pt(q, p, f, s|!)V!,t
(4)

Pt(p) =

P

!,f,s,q Pt(q, p, f, s|!)V!,t
P

p,!,f,s,q Pt(q, p, f, s|!)V!,t
(5)

Pt(q|p) =

P

!,f,s Pt(q, p, f, s|!)V!,t
P

q,!,f,s Pt(q, p, f, s|!)V!,t
(6)

Eqs. (2)-(6) are iterated until convergence; typically 15-

20 iterations are sufficient. No update rule for the sound

state templates P (!|q, p, f, s) is included, since they are

considered fixed in the model. As in [4], we also incor-

porated sparsity constraints on Pt(p) and Pt(s|p) in order

to control the polyphony level and the instrument contribu-

tion in the resulting transcription. The resulting multi-pitch

detection output is given by P (p, t) = P (t)Pt(p), while a
time-pitch representation P (f 0, t) can also be derived from
the model, as in [4] (this representation has the same pitch

resolution as in the input representation, i.e. 20 cent reso-

lution).

2.3 Temporally-constrained model

This model variant proposes a formulation that expresses

the evolution of each note as a succession of sound states,

following work carried out in [4]. These temporal con-

straints are modelled using pitch-wise hiddenMarkov mod-

els (HMMs). This also follows the work done by Mysore

in [17] on the non-negative HMM (a spectrogram factor-

ization framework where the appearance of each template

is controlled by an HMM).

As discussed, one HMM is created per pitch p, which
has as hidden states the sound states q (assuming 88 pitches

that cover the entire note range of a piano, 88 HMMs are

used). Thus, the basic elements of this pitch-wise HMM

are: the sound state priors P (q(p)
1 ), the sound state transi-

tions P (q(p)
t+1|q(p)

t ), and the observations P (!̄t|q(p)
t ). Fol-

lowing the notation of [17], !̄ corresponds to the sequence

of observed spectra from all time frames, and !̄t is the ob-

served spectrum at the t-th time frame. Also, q(p)
t is the

value of the hidden sound state at the t-th frame for pitch

p.
In this paper, the model formulation is the same as in

(1), where the following assumption is made:

Pt(q|p = i) = Pt(q
(p=i)
t |!̄) (7)

which means that the sound state activations are assumed

to be produced by the posteriors (also called responsibili-

ties) of the HMM for pitch p. Following [17], the observa-
tion probability is calculated as:

P (!̄t|q(p)
t ) =

Y

!t

P (!t|q(p)
t )V!,t (8)

where P (!t|q(p)
t ) is the approximated spectrum for a given

sound state and pitch. The observation probability is cal-

culated as above since in PLCA-based models, V!,t rep-

resents the number of times ! has been drawn at the t-th
time frame [17].

In order to estimate the unknown parameters of this pro-

posed temporally-constrained model, the EM algorithm is

also used, which results in a series of iterative update rules

that combine PLCA-based updates as well as the HMM

forward-backward algorithm [20]. For the Expectation step,

the HMM posterior per pitch is computed as:

Pt(q
(p)
t |!̄) =

Pt(!̄, q(p)
t )

P

q(p)
t

Pt(!̄, q(p)
t )

=
↵t(q

(p)
t )�t(q

(p)
t )

P

q(p)
t

↵t(q
(p)
t )�t(q

(p)
t )

(9)
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where ↵t(q
(p)
t ) and �t(q

(p)
t ) are the forward and backward

variables for the p-th HMM, respectively, and can be com-

puted using the forward-backward algorithm [20]. The

posterior for the transition probabilities Pt(q
(p)
t+1, q

(p)
t |!̄) is

also computed as in [4]. Finally, the model posterior is

computed using (2) and (7).

For theMaximization step, unknown parameters Pt(f |p),
Pt(s|p), and Pt(p) are computed using eqs. (3)-(5). Fi-

nally, the sound state priors and transitions per pitch p are

estimated as:

P (q(p)
1 ) = P1(q

(p)
1 |!̄) (10)

P (q(p)
t+1|q(p)

t ) =

P

t Pt(q
(p)
t , q(p)

t+1|!̄)
P

q(p)
t+1

P

t Pt(q
(p)
t , q(p)

t+1|!̄)
(11)

In our experiments, it was found that an initial estimation

of the pitch and source activations using the PLCA-only

updates in the Maximization step leads to a good initial

solution. In the final iterations (set to 3 in this case), the

HMM parameters are estimated as well, which leads to an

estimate of the sound state activations, and an improved so-

lution over the non-temporally constrained model of sub-

section 2.2.

2.4 Post-processing

For both the non-temporally constrained model of subsec-

tion 2.2 and the temporally-constrained model of subsec-

tion 2.3, the resulting pitch activation P (p, t) = P (t)Pt(p)
(which is used for multi-pitch detection evaluation) as well

as the pitch activation for a specific instrument P (s, p, t) =
P (t)Pt(p)Pt(s|p) (which is used for instrument assign-

ment evaluation) need to be converted into a binary repre-

sentation such as a piano-roll or a MIDI file. As in the vast

majority of spectrogram factorization-based music transcrip-

tion systems (e.g. [10, 15]), thresholding is performed on

the pitch and instrument activations, followed by a process

for removing note events with a duration less than 80ms.

3. EVALUATION

3.1 Training data

Sound state templates are extracted for several orchestral

instruments, using isolated note samples from the RWC

database [14]. Specifically, templates are extracted for bas-

soon, cello, clarinet, flute, guitar, harpsichord, oboe, pi-

ano, alto sax, and violin, using the variable-Q transform as

a time-frequency representation [22]. The complete note

range of the instruments (given available data) is used. The

sound state templates are computed in an unsupervised man-

ner, using a single-pitch and single-instrument variant of

the model of (1), with the number of sound states set to 3.

3.2 Test data

Several benchmark and freely available transcription datasets

are used for evaluation (all of them contain pitch ground

truth). Firstly, thirty piano segments of 30s duration are

used from the MAPS database using the ‘ENSTDkCl’ pi-

ano model. This test dataset has in the past been used for

System F P R
§2.2 70.08% 76.78% 65.27%

§2.3 71.56% 77.95% 66.89%

Table 1. Multi-pitch detection results for the MAPS-

ENSTDkCl dataset using the proposed models.

multi-pitch evaluation (e.g. [7,18], the latter also citing re-

sults using the method of [24]).

The second dataset consists of the woodwind quintet

recording from theMIREX 2007multiF0 development data-

set [1]. The multi-track recording has been evaluated in the

past either in its complete duration [4], or in shorter seg-

ments (e.g. [19, 24]).

Thirdly, we employ the Bach10 dataset [11], a multi-

track collection of multiple-instrument polyphonic music,

suitable for both multi-pitch detection and instrument as-

signment experiments. It consists of ten recordings of J.S.

Bach chorales, performed by violin, clarinet, saxophone,

and bassoon.

Finally, the TRIOS dataset [12] is also used, which in-

cludes five multi-track recordings of trio pieces of classi-

cal and jazz music. Instruments included in the dataset are:

bassoon, cello, clarinet, horn, piano, saxophone, trumpet,

viola, and violin.

3.3 Metrics

For assessing the performance of the proposed system in

terms of multi-pitch detection we utilise the onset-based

metric used in the MIREX note tracking evaluations [1]. A

note event is assumed to be correct if its pitch corresponds

to the ground truth pitch and its onset is within a ±50 ms

range of t ground truth onset. Using the above rule, pre-

cision (P), recall (R), and F-measure (F) metrics can be

defined:

P =
Ntp

Nsys
, R =

Ntp

Nref
, F =

2 · R · P
R + P (12)

whereNtp is the number of correctly detected pitches, Nsys

is the number of detected pitches, and Nref is the number

of ground-truth pitches. For comparison with other state-

of-the-art methods, we also use frame-based multiple-F0

estimation metrics, defined in [2], denoted as Pf , Rf , Ff .

For the instrument assignment evaluations with the Bach-

10 dataset, we use the pitch ground-truth of each instru-

ment and compare it with the instrument-specific output of

the system. As for the multi-pitch metrics, we define the

following note-based instrument assignment metrics: Fv ,

Fc, Fs, Fb, corresponding to violin, clarinet, saxophone,

and bassoon, respectively. We also use a mean instrument

assignment metric, denoted as Fins .

3.4 Results

Experiments are performed using the two proposed model

variants from Section 2: the non-temporally constrained

version of subsection 2.2 and the HMM-constrained ver-

sion of subsection 2.3. In both versions, the post-processing
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System F P R
§2.2 71.75% 68.78% 74.98%

§2.3 72.50% 73.31% 71.71%

Table 2. Multi-pitch detection results for the MIREX mul-

tiF0 recording using the proposed models.

System F P R
§2.2 64.43% 56.99% 74.16%

§2.3 65.01% 57.35% 75.11%

Table 3. Multi-pitch detection results for the Bach10

dataset using the proposed models.

steps are the same. For the HMM-constrained model, the

HMMs are initialized as ergodic, with uniform priors and

state transition probabilities.

In terms of multi-pitch detection evaluation, results for

theMAPS,MIREX, Bach10, and TRIOS datasets are shown

in Tables 1, 2, 3, and 4, respectively. In all cases, the

HMM-constrained model outperforms the non-temporally

constrained model. The difference over the two models

in terms of F-measure is more prominent for the MAPS

dataset (1.48%) and the TRIOS dataset (1.81%) compared

to the MIREX (0.75%) and Bach10 (0.58%) datasets. This

can be attributed to the presence of piano in the MAPS and

TRIOS datasets, compared to the woodwind/string instru-

ments present in the other two datasets; since the piano

is a pitched percussive instrument with a clear attack and

transient state, the incorporation of temporal constraints on

sound state evolution can be considered more important

compared to bowed string and woodwind instruments, that

do not exhibit a clear decay state. As an example of the

transcription performance of the proposed system, Fig. 4

shows the resulting pitch activation for the MIREX mul-

tiF0 recording along with the corresponding ground truth.

Instrument assignment results for the Bach10 dataset

are presented in Table 5. As can be seen, the performance

of the proposed system regarding instrument assignment is

much lower compared to multi-pitch detection, which this

can be attributed to the fact that instrument assignment is a

much more challenging problem, since it not only requires

a correct identification of a note, but also a correct clas-

sification of that detected note to a specific instrument. It

is worth noting however that a clear improvement is re-

ported when using the temporally-constrained model over

the model of subsection 2.2. That improvement is consis-

tent across all instruments.

3.4.1 Comparison with state-of-the-art

On comparison of the proposed system with other state-of-

the art multi-pitch detection methods, for MAPS the pro-

posed HMM-constrained method outperforms the spectro-

gram factorization transcription methods of [18] and [24]

by 13.2% and 2.5% in terms of F , respectively. It is how-

ever outperformed by the transcription system of [7] (4.9%

difference); it should be noted that the system of [7] is

System F P R
§2.2 57.55% 64.60% 54.04%

§2.3 59.36% 60.18% 59.45%

Table 4. Multi-pitch detection results for the TRIOS

dataset using the proposed models.

System Fv Fc Fs Fb Fins

§2.2 10.55% 39.99% 33.87% 40.80% 31.30%

§2.3 12.28% 41.55% 34.53% 42.33% 32.67%

Table 5. Instrument assignment results for the Bach10

dataset using the proposed models.

developed specifically for piano, in contrast with the pro-

posed multiple-instrument system.

Regarding comparison on the MIREX recording, the

proposed method outperforms the method of [6] by 3.9%

in terms ofF . In terms ofFf , the first 30sec of the MIREX

recording were evaluated using the systems of [24] and

[19], leading to Ff = 62.5% and Ff = 59.6%, respec-

tively. The proposed HMM-constrained method reaches

Ff = 70.35%, thus outperforming the aforementioned

systems.

For the Bach10 dataset, a comparison is made using

the accuracy metric defined in [11]. The proposed HMM-

constrained method reaches an accuracy of 72.0%, whereas

the method of [11] reaches 69.7% (the latter results are

with unknown polyphony level, for direct comparison with

the proposed method).

Finally, for the TRIOS dataset, multi-pitch detection re-

sults were reported in [6], with F = 57.6%. The pro-

posed method reaches for the HMM-constrained case F =
59.3%, thus outperforming the system of [6].

3.4.2 Comparing time-frequency representations

In order to evaluate the use of the proposed input VQT

time-frequency representation, a comparative experiment

is made using the proposed system and having as input a

constant-Q representation (using the method of [21], with a

60 bins/octave log-frequency resolution as with the VQT).

For the comparative experiments, the MAPS-ENSTDkCl

dataset is employed and both the non-temporally constrained

and HMM-constrained models are evaluated. The post-

processing steps are exactly the same as in the proposed

method. Results show that when using the constant-Q rep-

resentationF = 63.98% for the non-temporally constrained

model and F = 65.51% for the temporally-constrained

model, which are both significantly lower when compared

to using a VQT representation as input (cf. Table 1).

In order to show the improved detection performance

of a VQT representation with respect to lower pitches, the

transcription performance for the MAPS dataset was com-

puted when only taking into account notes below or above

MIDI pitch 60 (middle C in the piano). Using the VQT,

F = 65.18% for the lower pitches and F = 74.98%
for the higher pitches. In contrast when using the CQT,
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Figure 4. (a) The pitch activation output P (p, t) for the

first 10 sec of the MIREX multiF0 recording. (b) The cor-

responding pitch ground truth.

F = 51.17% for the lower pitches and F = 74.58%
for the higher pitches. This result clearly demonstrates

the benefit of using a VQT representation with respect to

temporal resolution in lower frequencies, and by extension,

to detecting lower pitches. As an example, Fig. 2 shows

the CQT and VQT spectrograms for a G1 piano note, with

the VQT exhibiting better temporal resolution in lower fre-

quencies.

3.4.3 Sound state templates vs. note templates

Here, a comparison is performed between the use of the

proposed 5-dimensional dictionary of sound state templates

against the use of a 4-dimensional note template dictio-

nary (which contains one template per pitch, instrument,

and log-frequency shifting); the latter is supported by the

method of [3]. In order to have a direct comparison, the

method of [3] (for which the source code is publicly avail-

able) is modified as to use the same input VQT represen-

tation as well as post-processing steps with the proposed

method, and is compared against the non-temporally con-

strained model of subsection 2.2.

When using a 4-dimensional dictionary, multi-pitch de-

tection performance for theMAPS dataset reaches 64.65%,

in contrast to 70.1% when using the 5-dimensional sound

state dictionary. This shows the importance of using sound

state templates, which are able to model the transient parts

of the signal in contrast to simply using one (typically har-

monic) note template for each pitch and instrument.

3.4.4 Runtimes

On computational efficiency, the proposed model requires

linear operations like matrix/tensor multiplications in the

EM steps; on the contrary, the previous model of [4] re-

quired the computation of convolutions which significantly

slowed down computations. Regarding runtimes, the orig-

inal HMM-constrained convolutive model of [4] runs at

about 60 ⇥ real-time using a Sony VAIO S15 laptop. Us-

ing the proposed method, the runtime is approximately 1

⇥ real-time for the non-temporally constrained model, and

2.5 ⇥ real-time for the HMM-constrained model (i.e. for

a 1min recording, runtimes are 1min and 2.5min, respec-

tively). Thus, the proposed system is significantly faster

compared to the model of [4], making it suitable for large-

scale MIR applications.

4. CONCLUSIONS

In this paper, we proposed a computationally efficient sys-

tem for multiple-instrument automatic music transcription,

based on probabilistic latent component analysis. The pro-

posed model employs a 5-dimensional dictionary of sound

state templates, covering different pitches, instruments, and

tunings. Two model variants were presented: a PLCA-

only method and a temporally constrained model that uses

pitch-wise HMMs in order to control the order of the sound

states. Experiments were performed on several transcrip-

tion datasets; results show that the temporally-constrained

model outperforms the PLCA-based variant. In addition,

the proposed system outperforms several state-of-the-art

multiple-instrument transcription systems using theMIREX

multiF0, Bach10, and TRIOS datasets. We also showed

that a VQT representation can yield improved results com-

pared to a CQT representation. Finally, the non-temporally

constrained variant of the model is able to transcribe a

recording at 1 ⇥ real-time, thus making this method use-

ful for large-scale applications. The Matlab code for the

HMM-constrained model can be found online 1 in the hope

that this model can serve as a framework for creating tran-

scription systems useful to the MIR community.

This system can also be extended beyond the proposed

formulations, by exploiting recent developments in spec-

trogram factorization-based approaches for music and au-

dio signal analysis. Thus, the proposed model can also

incorporate prior information in various forms (e.g. instru-

ment identities, key information, music language models),

following the PLCA-based approach of [23]. It can also

use alternate EM update rules to guide convergence [8] or

can use additional temporal continuity and sparsity con-

straints [13]. Drum transcription can also be incorporated

into the system, in the same way as in [5]. In the future,

we will also incorporate temporal constraints on note tran-

sitions and polyphony level estimation and will continue

work on instrument assignment by combining timbral fea-

tures with PLCA-based models.
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