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ABSTRACT

In this paper, we present a novel approach to extract song-
level descriptors built from frame-level timbral features
such as Mel-frequency cepstral coefficient (MFCC). These
descriptors are called identity vectors or i-vectors and are
the results of a factor analysis procedure applied on frame-
level features. The i-vectors provide a low-dimensional
and fixed-length representation for each song and can be
used in a supervised and unsupervised manner.

First, we use the i-vectors for an unsupervised music
similarity estimation, where we calculate the distance be-
tween i-vectors in order to predict the genre of songs.

Second, for a supervised artist classification task we re-
port the performance measures using multiple classifiers
trained on the i-vectors.

Standard datasets for each task are used to evaluate
our method and the results are compared with the state
of the art. By only using timbral information, we already
achieved the state of the art performance in music similar-
ity (which uses extra information such as rhythm). In artist
classification using timbre descriptors, our method outper-
formed the state of the art.

1. INTRODUCTION AND RELATED WORK

In content-based music similarity and classification, acous-
tic features are extracted from audio and characteristics of
a song are projected into a new space called feature space.
In this space, different attributes can be captured based on
the features used. For example, features such as Fluctua-
tion Pattern (FP) [26], reflect the variability related to the
rhythm; and features such as MFCCs, demonstrate the tim-
bral perspective of a song. However, the diversity of music
genres, the presence of different musical instruments and
singing techniques make the capturing of these variabili-
ties difficult. Different modeling techniques and machine
learning approaches are used to find the factors in the fea-
ture space that best represent these variabilities.

Multiple approaches have been followed in the litera-
ture for extracting the features from songs in which 1) clas-
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sical frame-level features, 2) block-level features and 3)
song-level features are the most frequently used methods
in MIR.

1.1 Frame-level features

In the frame-level approach, features are often extracted
from short-time frames of a song. In this approach, frames
are first classified directly, and then the results are com-
bined to make a decision for a song.

1.2 Block-level features

Block-level features process the frames in terms of blocks,
where each block consists of a fixed number of frames.
They are built in two steps: first, the block processing step
and second, the generalization step. In the first step, by
selecting a collection of frames using a pattern, blocks are
built. Then in the second step, the feature values of all
blocks are combined into a single representation for the
whole song. In [29], six different block-level features are
introduced and a method is proposed to fuse all the blocks
together. Block-level features [5, 24, 26, 29] have shown
considerable performances in the MIREX 1 challenges.

1.3 Song-level features

Song-level features are found useful in artist recognition
as well as music similarity estimation. In [30], a compact
signature is generated for each song, and then is compared
to the other songs using a graph matching approach for
artist recognition. In [21] multivariate kernels have been
used to model an artist. Recently, [5,29] proposed methods
to extract a fixed-length vector from a song to be used in
music similarity estimation and genre classification.

The advantage of methods based on song-level features
is that different tools such as dimensionality reduction (e.g.
Principal Components Analysis (PCA) [15]) and projec-
tions can be applied to songs. For example, in [5], super-
vectors extracted via a Gaussian Mixture Model (GMM)
are found useful to represent songs and calculate the sim-
ilarity using Euclidean distance. In [24] a method using
song-level features is presented, which models frame-level
descriptors such as MFCCs and FP with a single Gaussian
and then the similarity between songs is calculated using
Kullback Leibler divergence. In [26], rhythm descriptors

1 Annual Music Information Retrieval eXchange (MIREX). More in-
formation is available at: http://www.music-ir.org
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are introduced to improve the performance of music simi-
larity measures in [24].

1.3.1 GMM and GMM-supervectors

GMMs have been frequently used for acoustic modeling in
music processing [4, 5, 12]. In [4, 5], a GMM is used as
a Universal Background Model (UBM) for content-based
music similarity estimation and genre classification.

Gaussian-based features used in [5, 24] are other exam-
ples of song-level features which use a Gaussian model to
create a statistical representation of a song from frame-
level features. Similar to [4, 5], a GMM supervector is
computed for each song. This representation is a fixed-
length vector, and is computed using a UBM (which is a
GMM, trained on a database of songs) via a procedure de-
scribed in [4, 5].

The first drawback of GMM-based methods is that
when the rank of the GMM space (number of Gaussian
components) increases, the dimensionality of GMM super-
vectors rises which causes problems such as the curse of di-
mensionality. One solution to this issue would be to use di-
mensionality reduction methods such as PCA. In our previ-
ous work [9], we showed that this is not effective. Another
solution would be to decompose these high-dimensional
supervectors into multiple terms with lower ranks which
we will discuss in the following section.

1.3.2 Session and Speaker variability

As described in [18], there exists a second drawback of
GMM-based methods. The performance of these frame-
works suffer from their inability to capture the variability
known as session variability in the field of speaker ver-
ification. In contrast to speaker variability which is the
variability that appears between different speakers, session
variability is defined as the variability that appears for a
speaker from one recording to another [18]. This variabil-
ity is called session because it appears inside a recording
session of a speaker.

1.3.3 Song, Genre and Artist variability

In MIR, similar to session variability, we define song vari-
ability as the variability that appears between songs. Also,
similar to speaker variability, we define genre variabil-
ity for genre classification as the variability that appears
between different genres, and artist variability for artist
recognition as the variability appears between different
artists.

The second drawback of GMM-based methods is that
they can not distinguish between song variability and genre
(or artist) variability. If we can provide a decomposition of
GMM supervectors in a way that separates the desired fac-
tors, such as genre variability from undesired ones, such
as song variability, and at the same time decreases the
dimensionality of GMM supervectors, then as a result a
better representation of GMM supervectors with lower di-
mensionality and better discrimination power will be ob-
tained. Factor Analysis (FA) provides the means to pro-
duce such representations where a GMM supervector de-

composes into multiple factors. An advantage of the fea-
tures obtained by FA compared to block-level features and
Gaussian-based features is that FA can be performed in a
way that after decomposition, each component can exhibit
a specific variability such as artist or genre. Thus, desired
factors can be kept and undesired factors can be removed
from the song’s GMM supervector. By applying such de-
composition on top of the GMM space, another space with
bases of desired factors (e.g. genre space, with genre fac-
tors) can be created.

Recently, in the field of speaker verification, Dehak et
al. [7] introduced i-vectors which outperformed the state
of the art and provided a solution for the problem of
session variability in the GMM-UBM frameworks. The
i-vector extraction is a feature-modeling technique that
builds utterance-level features, and it has been success-
fully used in other areas such as emotion recognition [34],
language recognition [8], accent recognition [1] and audio
scene detection [10].

The i-vector method applies a FA procedure to extract
low-dimensional features from GMM supervectors. This
FA procedure estimates hidden variables in GMM super-
vector space, which provides better discrimination ability
and lower dimensionality than GMM supervectors. These
hidden variables are the i-vectors and even though the
i-vector extraction procedure is totally unsupervised,
they can be used for both supervised and unsupervised
tasks. The aim of this paper is to introduce the i-vectors
to the MIR community and show their performance on two
of the major tasks in content-based MIR.

2. FACTOR ANALYSIS PROCEDURE

In this paper, examples are given from a genre classifi-
cation point of view. The definitions and the method are
extendable to other tasks in MIR such as artist classifica-
tion.

2.1 Overview of Factor Analysis Methods

A FA model can be viewed as a GMM supervector space,
where genre and song factors are its hidden variables.
Genre and song factors are defined in a way that for a given
genre, the values of the genre factors are assumed to be
identical for all songs within that genre. The song factors
may vary from one song to another.

Let’s assume we have a C mixture components GMM
and let F be the dimension of the acoustic feature vectors.
For each mixture component c = 1, . . . , C, let mc denote
the corresponding genre-independent mean vector (UBM
mean vector) and let m denote the C · F ⇥ 1 supervector
obtained by concatenating m1, . . . , mC .

Maximum a posteriori (MAP) [14] is a method that is
used to extract genre-dependent GMM supervectors. In
MAP, it is assumed that each genre g can be modeled only
by a single genre-dependent GMM supervector M(g).
This supervector is calculated from a genre-independent
vector m which is then adapted to a couple of songs from
a specific genre known as the genre-adaptation data.
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Similar to speaker modeling in speaker verifica-
tion [19], the MAP approach to genre modeling assumes
that for each mixture component c and genre g, there is an
unobservable offset vector Og such that:

M(g) = m + Og (1)

Og is unknown and can not be learned during the MAP
training procedure.

Further, eigenvoice MAP [17] assumes the row vec-
tors of the matrix Og are independent and identically dis-
tributed. A rectangular matrix V of dimensions C ·F ⇥R is
assumed where R is a parameter such that R ⌧ C ·F . The
V matrix has a lower rank than C · F and can be learned
from the training data. The supervector M(g) decomposes
into factors y(g) which have lower ranks using V . For
genre g, the FA used in eigenvoice MAP is as follows:

M(g) = m + V y(g) (2)

where y(g) is a hidden R⇥1 vector which has a standard
normal distribution. Eigenvoice MAP trains faster than
MAP, yet training V properly needs a very large amount
of data, also song factors are not considered in the decom-
position of M(g).

A solution for separation between song and genre fac-
tors was first suggested in [19], and later improved in [16]
as Joint Factor Analysis (JFA). JFA decomposition model
can be written as follows:

M = m + V y + Ux + Dz (3)

where M is a song GMM supervector, m is a genre- and
song-independent supervector which can be calculated us-
ing a UBM, V and D define a genre subspace (genre matrix
and diagonal residual, respectively), and U defines a song
subspace. The vectors y, z are the genre-dependent factors,
and x is the song-dependent factor in their respective sub-
spaces. They are assumed to be a random variable with a
standard normal distribution. Unlike eigenvoice MAP, JFA
gives us a modeling with separated genre and song factors
with low ranks, where they can be used to better separate
songs from different genres by removing song variability.

Even though JFA showed better performance than pre-
vious FA methods, in terms of separation between song
and genre factors, experimental results in [6] proved that if
we extract song and genre factors using JFA, song factors
also contain information about genres. Based on this find-
ing, another FA model is proposed in [7], which defines a
new low-dimensional space called Total Variability Space
(TVS). The vectors in this new space, are called i-vectors.
In the TVS, both song and genre factors are considered, but
modeled together as a new factor named total factor. To-
tal factors have lower dimensionality than GMM supervec-
tors and one can represent a song by extracting total factors
from its GMM supervector. Because i-vector FA showed
the best results in speaker verification [7], in this paper we
use it for multiple tasks in MIR. The FA procedure used to
obtain i-vectors is described in the next section.
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Figure 1: Graphical representation of different vectors
extracted during i-vector FA. F is the dimensionality of
acoustic features, C is the number of Gaussian compo-
nents, and R is the rank of the TVS matrix. a) frame-level
features of a song. b) and c) GMM supervector. d) TVS
matrix T . e) i-vector.

2.2 Overview of I-vectors

TVS refers to total factors that contain both genre and song
factors. In the TVS, a given song is represented by a low-
dimensional vector called i-vector, which provides a good
genre separability. This i-vector is known as point estimate
of the hidden variables in a FA model similar to JFA. This
describes these hidden variables and their characteristics.

In Figure 1, a graphical representation of vectors used in
different steps during i-vector FA is provided. From each
song, first frame-level features of dimensionality F are ex-
tracted as shown in Figure 1-a. Then, a C mixture compo-
nents GMM trained on a large number of songs is used to
extract GMM supervectors of dimension F ⇥C. This rect-
angular vector ( Figure 1-b) then reshapes to a (F · C) ⇥ 1
vector (Figure 1-c). A matrix of (C ·F )⇤R known as TVS
matrix (T ) is learned from a set of songs. T matrix is used
to reduce the dimensionality of GMM supervectors to R
where R is the rank of T , as can be observed in Figure 1-d.
The resulting vectors are i-vectors having a low rank of R
(Figure 1-e).
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Figure 2: 2D PCA projected vectors extracted from songs
of 3 different genres in GTZAN dataset. a) i-vectors. b)
GMM supervectors.

A comparison between GMM representation and i-
vector representation is provided in Figure 2. This visu-
alization is prepared by projecting GMM supervectors and
i-vectors using PCA into a 2 dimensional plane. Multiple
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songs of 3 different genres from the GTZAN dataset 2 are
selected, then both their GMM supervectors and i-vectors
are extracted. In Figure 2-a, a scatter plot of the song’s
projected i-vectors are shown. Also, in Figure 2-b, GMM
supervectors projected using PCA are displayed. It can be
observed that i-vector extraction was successful at increase
the discrimination between songs of different genres. In
the following paragraphs, the i-vector FA is described.

A C mixture components GMM (c = 1, . . . , C) called
UBM can be trained on a large amount of data from multi-
ple genres, where for component c, wc, mc and ⌃c denote
mixture weight, mean vector and covariance matrix respec-
tively. Given a song of genre g, a GMM supervector M(g)
can be calculated from a sequence of X1, . . . , X⌧ frames.
The i-vector FA equation decomposes the vector M(g) as
follows:

Mc(g) = mc + Ty (4)

where Mc(g) corresponds to a subvector of M(g) for
component c, mc is the genre- and song-independent vec-
tor, and y � N (0, 1) is the genre- and song-dependent
vector, known as the i-vector. A rectangular matrix T of
low rank known as TVS matrix is used to extract i-vectors
from the vector Mc(g).

The i-vector y is a hidden variable, but we can find
it using the mean of its posterior distribution. This pos-
terior distribution is Gaussian and is conditioned to the
BaumWelch (BW) statistics for a given song [17]. The
zero-order and the first-order BW statistics used to esti-
mate y, are called Nc and Pc respectively (see Equation 6).
Similar to [20], the BW statistics are extracted using the
UBM as follows.

A closed form of an i-vector y looks as follows:

y = (I + T t⌃�1N(s)T )�1 · T t⌃�1P (s) (5)

where we define N(s) as a diagonal matrix of dimen-
sion C · F ⇥ C · F with Nc ⇥ I (c = 1, . . . , C and I has
F ⇥ F dimensions) diagonal blocks. P (s) is a vector with
C · F ⇥ 1 dimensions and is made by concatenating all
first-order BW statistics Pc for a given song s; also ⌃ is
a diagonal covariance matrix of dimension C · F ⇥ C · F
estimated during the factor analysis procedure; it models
the residual variability not captured by the TVS matrix T .
The BW statistics Nc and Pc are defined as follows.

Suppose we have a sequence of frames X1, . . . , X⌧ and
a UBM with C mixture components defined in a feature
space of dimension F . The BW statistics needed to esti-
mate the i-vector for a given song are obtained by:

Nc =
X

t

�t(c)

Pc =
X

t

�t(c)Xt

(6)

where, for time t, �t(c) is the posterior probability of
Xt generated by the mixture component c of the UBM.

2 http://marsyas.info/downloads/datasets.html

Since BW statistics are calculated using a GMM, they are
called GMM supervectors in i-vector modeling.

TVS matrix T is estimated via a expectation maxi-
mization procedure using BW statistics. More information
about the training procedure of T can be found in [7, 22].

3. I-VECTORS FOR UNSUPERVISED MUSIC
SIMILARITY ESTIMATION

In this section, i-vectors are used for music similarity es-
timation task. Genre and song variability are the factors
used in this task.

3.1 Dataset

The 1517Artists 3 dataset is used for training UBM and T
matrix. This dataset consists of freely available songs and
contains 3180 tracks by 1517 different artists distributed
over 19 genres. The GTZAN dataset is used for music
similarity estimation which contains 1000 song excerpts
of 30 seconds, evenly distributed over 10 genres.

3.2 Frame-level Features

We use MFCCs as one of our timbral features. MFCCs
are the most utilized timbre-related frame-level features in
MIR. They are a compact, and perceptually motivated rep-
resentation of the spectral envelope.

For the extraction of the MFCCs, we use an observation
window of 10 ms, with an overlap of 50%. We extract
25 MFCCs with the rastamat toolbox [11]. The first and
second order derivatives (deltas and double-deltas) of the
MFCCs are also added to the feature vector.

Additionally, we use the first order derivative of a cent-
scaled spectrum, calculated in the same way as explained
in [29]. These features are called Spectrum Derivatives
(SD).

3.3 Baselines

Four different baselines are used to be compared to our
method. The first baseline is fusing block-level similar-
ity measure (BLS) [29], which uses 6 different block-
level features containing spectral pattern, delta spectral
pattern, variance delta spectral pattern, logarithmic fluctu-
ation pattern, correlation pattern and spectral contrast pat-
tern. These features are used with a similarity function
and a distance normalization method to calculate a pair-
wise distance matrix between songs. The second baseline
is called Rhythm Timbre Bag of Features (RTBOF) [26].
RTBOF has two components of rhythm and timbre which
are modeled over local spectral features. The third base-
line is MARSYAS (Music Analysis, Retrieval and Synthe-
sis for Audio Signals) which has an open source toolbox to
calculate various audio features. 4 A similarity function is
used to calculate a distance matrix of features extracted as
described in [32]. The last baseline (CMB) is a combina-
tion of BLS and RTBOF, which reported in [29] as the best
similarity method in case of genre classification measures.

3 This dataset can be downloaded from www.seyerlehner.info.
4 http://marsyas.info
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3.4 Experimental Setup

A UBM with 1024 Gaussian components is trained on the
1517Artists dataset using 2000 consecutive frames from
the middle area of each song. No labels are used during
the training procedure of UBM and T matrix. The TVS
matrix T is trained using 400 total factors, and used during
the i-vector extraction procedure. The number of factors
and Gaussian components was chosen after a parameter
analysis step on a small development dataset which differs
from the datasets used in this paper.

Two sets of different i-vectors are used to calculate two
similarity matrices for the GTZAN dataset. First, MFCC
features are used to extract i-vectors, and cosine distance
is used to calculate a pair-wise distance matrix between all
songs, since in [7] cosine distance has been successfully
used with i-vectors. UBM and T matrix are also trained
using MFCC features of 1517Artists.

Second, SD features are used to extract another set of
i-vectors to calculate our second distance matrix using co-
sine distance. Similar to MFCC i-vectors, a new UBM
and T matrix is trained using SD features extracted from
1517Artist dataset.

Pair-wise distance matrices are normalized using a dis-
tance space normalization (DSN) proposed in [25]. The
distance matrices for baseline methods are downloaded
from the website 5 of the author of [29].

3.5 Evaluation

We evaluate the music similarity measures using genre
classification via k-nearest neighbor (KNN) classification.
This method is also used in [5, 24, 26, 29]. We use dif-
ferent values of k that vary from 1 to 20. Also, we use a
leave-one-out scenario for genre classification using pair-
wise distance matrices.

3.6 Results and Discussion

The KNN genre classification accuracy calculated using
our method is compared to the baseline methods, and the
results are shown in Figure 3. As can be seen, our method
using MFCC features achieved the performance of the BLS
baseline and outperformed MARSYAS. By combining the
distance matrices calculated using MFCC and SD i-vectors
with equal weights after applying DSN, we could achieve
the performance of RTBOF baseline.

Since the authors of the BLS method in [29] reported a
combination of BLS and RTBOF (named as CMB in [29])
to perform best, we also combined our MFCC+SD i-
vector distance matrix with RTBOF with equal weights
after applying DSN and achieved the performance of
CMB. Furthermore, by combining MFCC+SD i-vector and
CMB distance matrix (with equal weights after DSN), we
could achieve a better performance than the best combined
method reported in [29].

5 www.seyerlehner.info

Figure 3: Evaluation results of KNN genre classification
on GTZAN dataset.

3.7 Resources

The MSR Identity Toolbox [28] was used for i-vector ex-
traction. We also used drtoolbox [33] to apply PCA for
visualization in Figure 2.

4. I-VECTORS FOR SUPERVISED ARTIST
CLASSIFICATION

In this section, i-vectors are used for artist recognition task.
Artist and song variability are the factors used in this task.
More details about artist recognition using i-vectors can be
found in our previous work [9].

4.1 Dataset

The artist classification experiments were conducted using
the artist20 dataset [12]. It contains 1413 tracks, mostly
rock and pop songs, composed of six albums from each of
the 20 different artists.

4.2 Frame-level Features

Instead of extracting the MFCCs ourselves, we use the
ones provided as part of the dataset in [12]. Neither first
nor second order derivatives of the MFCCs are used. Sim-
ilar to the approach already discussed in Section 3.2, we
also include the first order derivative of a cent-scaled spec-
trum (SD features).

4.3 Baselines

Multiple baseline methods from the literature are selected
and their performance is compared to that achieved by our
method. Results are reported for a 20-class artist classifi-
cation task on the artist20 dataset [12]. The first baseline
(BLGMM) models artists with GMMs using MFCCs [12].
The second baseline (BLsparse) uses a sparse feature
learning method [31] of ‘bag of features’ (BOF). Both the
magnitude and phase parts of the spectrum are used in this
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method. The third baseline is (BLsign). It generates a com-
pact signature for each song using MFCCs, and then com-
pares these by a graph matching technique [30]. The fourth
baseline (BLmultiv) uses multivariate kernels [21] with the
direct uniform quantization of the MFCC features. The re-
sults for the latter three are taken from their publications,
while the results for the BLGMM baseline are reproduced
using the implementation provided with the dataset. The
performance of all baselines on the artist20 dataset are re-
ported using the same songs, and the same fold splits in the
6-fold cross-validation.

4.4 Experimental Setup

Similar to the setup followed in Section 3.4, a UBM with
1024 Gaussian components and a T matrix with 400 fac-
tors are used for i-vector extraction. Unlike the setup in
music similarity estimation, no other dataset is used to
train T and the UBM. Instead, in each fold the training
set is used to train UBM and T matrix. Unlike the setup
described in Section 3.4, we apply a Linear Discriminant
Analysis (LDA) [23] to the i-vectors to reduce the dimen-
sionality from 400 to 19. The reason we didn’t use LDA
for music similarity estimation is that the whole procedure
of i-vector extraction in Section 3 was unsupervised, and
no labels were used during the i-vector extraction process.

In each fold, the LDA is trained on the same data that
UBM and T matrix are trained. I-vectors are centered by
removing the mean calculated from training i-vectors, then
length-normalized [13] before applying LDA. After apply-
ing LDA, once again i-vectors are length-normalized since
iterative length-normalization was found useful in [2]. The
length normalization provides a standard form of i-vectors.

We fuse MFCC and SD i-vectors of a song simply
by concatenating the dimensionality-reduced i-vectors and
subsequently feed them into the classifiers investigated.

First, a Probabilistic Linear Discriminant Analysis
(PLDA) [27] is used to find the artist for each song (iv-
PLDA). PLDA is a generative model which models both
intra-class and inter-class variance as multidimensional
Gaussian and showed significant results with i-vectors [3].
Second, a KNN classifier with k = 3 (3NN) and a co-
sine distance is considered (iv3NN). Third, a Discriminant
Analysis (DA) classifier is investigated with a linear dis-
criminant function and a uniform prior (ivDA).

4.5 Evaluation

A 6-fold cross-validation proposed in [12] is used to eval-
uate the artist classification task. In each fold, five albums
from each artist are used for training and one for testing.
We report mean class-specific accuracy, F1, precision and
recall, all averaged over folds.

4.6 Results and Discussion

The results of artist classification are reported in Table 1.
Using MFCC i-vectors, our proposed method outper-
formed all the baselines with all three classifiers. Also by

using MFCC+SD i-vectors, the results of artist classifica-
tion from all 3 classifiers improved. The best artist classifi-
cation performance is achieved using MFCC+SD i-vectors
and a DA classifier yielding 11 percentage point improve-
ment in accuracy and 10 percentage point improvement in
F1 compared to the best known results among all the base-
lines.

Method Feat. Acc% F1% Pr% Rec%
BLGMM 20mfcc 55.90 55.18 58.74 58.20
BLsparse BOF 67.50 n/a n/a n/a
BLsign 15mfcc 71.50 n/a n/a n/a
BLmultiv 13mfcc 74.30 74.79 n/a n/a
ivPLDA 20mfcc 83.30 82.58 83.72 84.02
iv3NN 20mfcc 82.43 81.70 83.06 83.03
ivDA 20mfcc 83.36 82.67 84.07 83.78
ivPLDA 20mfcc+sd 85.27 84.58 85.87 85.68
iv3NN 20mfcc+sd 83.68 83.05 84.10 84.55
ivDA 20mfcc+sd 85.45 84.59 85.80 85.68

Table 1: Artist classification results for different methods
on the artist20 dataset.

4.7 Resources

We used the same resources as reported in Section 3.7. In
addition, we used the PLDA implementation from MSR
Identity Toolbox [28] and LDA from drtoolbox [33].

5. CONCLUSION

In this paper, we propose an i-vector based factor analy-
sis (FA) technique to extract song-level features for unsu-
pervised music similarity estimation and supervised artist
classification. In music similarity estimation, our method
achieved the performance of state-of-the-art methods by
using only timbral information. In artist classification, our
method was evaluated on a variety of classifiers and proved
to yield stable results. The proposed method outperformed
all the baselines on the artist20 dataset and improved the
best known artist classification measures among baselines.
To the best of our knowledge, our results are the highest
artist classification results published so far for the artist20
dataset.
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